12 research outputs found

    A cosmid and cDNA fine physical map of a human chromosome 13q14 region frequently lost in B-cell chronic lymphocytic leukemia and identification of a new putative tumor suppressor gene, Leu5

    No full text
    B-cell chronic lymphocytic leukemia (B-CLL) is a human hematological neoplastic disease often associated with the toss of a chromosome 13 region between RB1 gene and locus D13S25, A new tumor suppressor gene (TSG) may be located in the region. A cosmid contig has been constructed between the Loci D13S1168 (W19598) and D13S25 (H2-42), which corresponds to the minimal region shared by B-CLL associated deletions. The contig includes more than 200 LANL and ICRF cosmid clones covering 620 kb, Three cDNAs likely corresponding to three different genes hare been found in the minimally deleted region, sequenced and mapped against the contigged cosmids, cDNA clone 10k4 as well as a chimeric clone 13g3, codes for a zinc-finger domain of the RING type and shares homology to some known genes involved in tumorigenesis (RET finger protein, BRCA1) and embryogenesis (MID1). We have termed the gene corresponding to 10k4/13g3 clones LEU5, This is the first gene with homology to known TSGs which has been found in the region of B-CLL rearrangements. (C) 1998 Federation of European Biochemical Societies

    Positional cloning of the Fanconi anaemia group A gene

    No full text
    The Fanconi anaemia/Breast cancer consortium* Fanconi anaemia (FA) is an autosomal recessive disorder associated with progressive bone-marrow failure, a variety of congenital abnormalities, and predisposition to acute myeloid leukaemia1. Cells from FA patients show increased sensitivity to bifunctional DNA crosslinking agents such as diepoxybutane and mitomycin C, with characteristic chromosome breakage2. FA is genetically heterogeneous, at least five different complementation groups (FA-A to FA-E) having been described3,4. The gene for group C (FAC) was cloned by functional complementation and mapped to chromosome 9q22.3 (refs 3, 5), but the genes for the other complementation groups have not yet been identified. The group A gene (FAA) has recently been mapped to chromosome 16q24.3 by linkage analysis6, and accounts for 60−65% of FA cases7,8. We narrowed the candidate region by linkage and allelic association analysis, and have isolated a gene that is mutated in FA-A patients. The gene encodes a protein of 1,455 amino acids that has no significant homology to any other known proteins, and may therefore represent a new class of genes associated with the prevention or repair of DNA damage.Sinoula Apostolou, Scott A. Whitmore, Joanna Crawford, Gregory Lennon, Grant R. Sutherland, David F. Callen, Leonarda lanzano, Maria Savino, Maria D'Apolito, Angelo Notarangeio, Elena Memeo, Maria Rosaria Piemontese, Leopoldo Zelante, Anna Savoia, Rachel A. Gibson, Alex J. Tipping, Neil V. Morgan, Sheila Hassock, Stander Jansen, Thomy J. de Ravel, Carola Van Berkell, Jan C. Pronk, Douglas F. Easton, Christopher G. Mathew, Orna Levran, Peter C. Verlander, Sat Dev Batish, Tamar Erlich, Arleen D. Auerbach, Anne-Marie Cleton-Jansen, Elna W. Moerland, Cees J. Cornelisse, Norman A. Doggett, Larry L. Deaven & Robert K. Moyzishttp://www.ncbi.nlm.nih.gov/pubmed/889656
    corecore