196 research outputs found

    Stepwise determination of multicompartment disposition and absorption parameters from extravascular concentration-time data. Application to mesoridazine, flurbiprofen, flunarizine, labetalol, and diazepam

    Full text link
    When disposition is monoexponential, extravascular concentrationtime (C, t) data yield both disposition and absorption parameters, the latter via the Wagner-Nelson method or deconvolution which are equivalent. Classically, when disposition is multiexponential, disposition parameters are obtained from intravenous administration and absorption data are obtained from extravascular C, t data via the Loo-Riegelman or Exact Loo-Riegelman methods or via deconvolution. Thus, in multiexponential disposition one assumes no intrasubject variation in disposition, a hypothesis that has not been proven for most drugs. Based on the classical two and threecompartment open models with central compartment elimination, and using postabsorptive extravascular C, t data only, we have developed four equations to estimate k 10 when disposition is biexponential and two other equations to estimate k 10 when disposition is triexponential. The other disposition rate constants are readily obtained without intravenous data. We have analyzed extravascular data of flurbiprofen (12 sets), mesoridazine (20 sets), flunarizine (5 sets), labetalol (9 sets), and diazepam (4 sets). In the case of diazepam intravenous C, t data were also available for analysis. After disposition parameters had been estimated from the extravascular data the Exact Loo-Riegelman method with the Proost modification was applied to the absorptive extravascular data to obtain A T /V p as a function of time. These latter data for each subject and each drug studied were found to befitted by a function indicating either simple firstorder absorption, two consecutive firstorder processes, or zero order absorption. After absorption and disposition parameters had been estimated, for each set of extravascular data analyzed, a reconstruction trend line through the original C, t data was made. The new methods allow testing of the hypothesis of constancy of disposition with any given drug. There is also a need for new methods of analysis since the majority of drugs have no marketed intravenous formulation, hence the classical methods cannot be applied .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45040/1/10928_2005_Article_BF01061665.pd

    Science and Ideology in Economic, Political, and Social Thought

    Get PDF
    This paper has two sources: One is my own research in three broad areas: business cycles, economic measurement and social choice. In all of these fields I attempted to apply the basic precepts of the scientific method as it is understood in the natural sciences. I found that my effort at using natural science methods in economics was met with little understanding and often considerable hostility. I found economics to be driven less by common sense and empirical evidence, then by various ideologies that exhibited either a political or a methodological bias, or both. This brings me to the second source: Several books have appeared recently that describe in historical terms the ideological forces that have shaped either the direct areas in which I worked, or a broader background. These books taught me that the ideological forces in the social sciences are even stronger than I imagined on the basis of my own experiences. The scientific method is the antipode to ideology. I feel that the scientific work that I have done on specific, long standing and fundamental problems in economics and political science have given me additional insights into the destructive role of ideology beyond the history of thought orientation of the works I will be discussing

    Characterizing benthic macroinvertebrate and algal biological condition gradient models for California wadeable Streams, USA

    Get PDF
    The Biological Condition Gradient (BCG) is a conceptual model that describes changes in aquatic communities under increasing levels of anthropogenic stress. The BCG helps decision-makers connect narrative water quality goals (e.g., maintenance of natural structure and function) to quantitative measures of ecological condition by linking index thresholds based on statistical distributions (e.g., percentiles of reference distributions) to expert descriptions of changes in biological condition along disturbance gradients. As a result, the BCG may be more meaningful to managers and the public than indices alone. To develop a BCG model, biological response to stress is divided into 6 levels of condition, represented as changes in biological structure (abundance and diversity of pollution sensitive versus tolerant taxa) and function. We developed benthic macroinvertebrate (BMI) and algal BCG models for California perennial wadeable streams to support interpretation of percentiles of reference-based thresholds for bioassessment indices (i.e., the California Stream Condition Index [CSCI] for BMI and the Algal Stream Condition Index [ASCI] for diatoms and soft-bodied algae). Two panels (one of BMI ecologists and the other of algal ecologists) each calibrated a general BCG model to California wadeable streams by first assigning taxa to specific tolerance and sensitivity attributes, and then independently assigning test samples (264 BMI and 248 algae samples) to BCG Levels 1–6. Consensus on the assignments was developed within each assemblage panel using a modified Delphi method. Panels then developed detailed narratives of changes in BMI and algal taxa that correspond to the 6 BCG levels. Consensus among experts was high, with 81% and 82% expert agreement within 0.5 units of assigned BCG level for BMIs and algae, respectively. According to both BCG models, the 10th percentiles index scores at reference sites corresponded to a BCG Level 3, suggesting that this type of threshold would protect against moderate changes in structure and function while allowing loss of some sensitive taxa. The BCG provides a framework to interpret changes in aquatic biological condition along a gradient of stress. The resulting relationship between index scores and BCG levels and narratives can help decision-makers select thresholds and communicate how these values protect aquatic life use goals

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    Liberalization, globalization and the dynamics of democracy in India

    Get PDF
    In the closing decades of the twentieth century there has been an almost complete intellectual triumph of the twin principles of marketization (understood here as referring to the liberalization of domestic markets and freer international mobility of goods, services, financial capital and perhaps, more arguably, labour) and democratization . A paradigm shift of this extent and magnitude would not have occurred in the absence of some broad consensus among policymakers and (sections of) intellectuals around the globe on the desirability of such a change. There seems to be a two-fold causal nexus between marketization and democracy. The first is more direct, stemming from the fact of both systems sharing certain values and attitudes in common. But there is also a second more indirect chain from marketization to democracy, which is predicated via three sub-chains (i) from marketization to growth, (ii) from growth to overall material development welfare and (iii) from material development to social welfare and democracy. We examine each of these sub-links in detail with a view to obtaining a greater understanding of the hypothesized role of free markets in promoting democracies. In the later part of the paper we examine the socio-economic outcomes governing the quality of democracy in a specifically Indian context

    Time dependencies in the occurrences of epileptic seizures

    Full text link
    A new method of analysis, developed within the framework of nonlinear dynamics, is applied to patient recorded time series of the occurrence of epileptic seizures. These data exhibit broad band spectra and generally have no obvious structure. The goal is to detect hidden internal dependencies in the data without making any restrictive assumptions, such as linearity, about the structure of the underlying system. The basis of our approach is a conditional probabilistic analysis in a phase space reconstructed from the original data. The data, recorded from patients with intractable epilepsy over a period of 1-3 years, consist of the times of occurrences of hundreds of partial complex seizures. Although the epileptic events appear to occur independently, we show that the epileptic process is not consistent with the rules of a homogeneous Poisson process or generally with a random (IID) process. More specifically, our analysis reveals dependencies of the occurrence of seizures on the occurrence of preceding seizures. These dependencies can be detected in the interseizure interval data sets as well as in the rate of seizures per time period. We modeled patient's inaccuracy in recording seizure events by the addition of uniform white noise and found that the detected dependencies are persistent after addition of noise with standard deviation as great as 1/3 of the standard deviation of the original data set. A linear autoregressive analysis fails to capture these dependencies or produces spurious ones in most of the cases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31879/1/0000830.pd

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    • 

    corecore