547 research outputs found

    A Quasi-Classical Model of Intermediate Velocity Particle Production in Asymmetric Heavy Ion Reactions

    Full text link
    The particle emission at intermediate velocities in mass asymmetric reactions is studied within the framework of classical molecular dynamics. Two reactions in the Fermi energy domain were modelized, 58^{58}Ni+C and 58^{58}Ni+Au at 34.5 MeV/nucleon. The availability of microscopic correlations at all times allowed a detailed study of the fragment formation process. Special attention was paid to the physical origin of fragments and emission timescales, which allowed us to disentangle the different processes involved in the mid-rapidity particle production. Consequently, a clear distinction between a prompt pre- equilibrium emission and a delayed aligned asymmetric breakup of the heavier partner of the reaction was achieved.Comment: 8 pages, 7 figures. Final version: figures were redesigned, and a new section discussing the role of Coulomb in IMF production was include

    Z-dependent Barriers in Multifragmentation from Poissonian Reducibility and Thermal Scaling

    Full text link
    We explore the natural limit of binomial reducibility in nuclear multifragmentation by constructing excitation functions for intermediate mass fragments (IMF) of a given element Z. The resulting multiplicity distributions for each window of transverse energy are Poissonian. Thermal scaling is observed in the linear Arrhenius plots made from the average multiplicity of each element. ``Emission barriers'' are extracted from the slopes of the Arrhenius plots and their possible origin is discussed.Comment: 15 pages including 4 .ps figures. Submitted to Phys. Rev. Letters. Also available at http://csa5.lbl.gov/moretto

    The Dictyostelium discoideum genome lacks significant DNA methylation and uncovers palindromic sequences as a source of false positives in bisulfite sequencing

    Get PDF
    DNA methylation, the addition of a methyl (CH3) group to a cytosine residue, is an evolutionarily conserved epigenetic mark involved in a number of different biological functions in eukaryotes, including transcriptional regulation, chromatin structural organization, cellular differentiation and development. In the social amoeba Dictyostelium, previous studies have shown the existence of a DNA methyltransferase (DNMA) belonging to the DNMT2 family, but the extent and function of 5-methylcytosine in the genome are unclear. Here, we present the whole genome DNA methylation profile of Dictyostelium discoideum using deep coverage replicate sequencing of bisulfite-converted gDNA extracted from post-starvation cells. We find an overall very low number of sites with any detectable level of DNA methylation, occurring at significant levels in only 303-3432 cytosines out of the ∼7.5 million total cytosines in the genome depending on the replicate. Furthermore, a knockout of the DNMA enzyme leads to no overall decrease in DNA methylation. Of the identified sites, significant methylation is only detected at 11 sites in all four of the methylomes analyzed. Targeted bisulfite PCR sequencing and computational analysis demonstrate that the methylation profile does not change during development and that these 11 cytosines are most likely false positives generated by protection from bisulfite conversion due to their location in hairpin-forming palindromic DNA sequences. Our data therefore provide evidence that there is no significant DNA methylation in Dictyostelium before fruiting body formation and identify a reproducible experimental artifact from bisulfite sequencing. © 2023 The Author(s). Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics

    Entropic Fluctuations in Statistical Mechanics I. Classical Dynamical Systems

    Get PDF
    Within the abstract framework of dynamical system theory we describe a general approach to the Transient (or Evans-Searles) and Steady State (or Gallavotti-Cohen) Fluctuation Theorems of non-equilibrium statistical mechanics. Our main objective is to display the minimal, model independent mathematical structure at work behind fluctuation theorems. Besides its conceptual simplicity, another advantage of our approach is its natural extension to quantum statistical mechanics which will be presented in a companion paper. We shall discuss several examples including thermostated systems, open Hamiltonian systems, chaotic homeomorphisms of compact metric spaces and Anosov diffeomorphisms.Comment: 72 pages, revised version 12/10/2010, to be published in Nonlinearit

    Phase Decomposition and Chemical Inhomogeneity in Nd2-xCexCuO4

    Full text link
    Extensive X-ray and neutron scattering experiments and additional transmission electron microscopy results reveal the partial decomposition of Nd2-xCexCuO4 (NCCO) in a low-oxygen-fugacity environment such as that typically realized during the annealing process required to create a superconducting state. Unlike a typical situation in which a disordered secondary phase results in diffuse powder scattering, a serendipitous match between the in-plane lattice constant of NCCO and the lattice constant of one of the decomposition products, (Nd,Ce)2O3, causes the secondary phase to form an oriented, quasi-two-dimensional epitaxial structure. Consequently, diffraction peaks from the secondary phase appear at rational positions (H,K,0) in the reciprocal space of NCCO. Additionally, because of neodymium paramagnetism, the application of a magnetic field increases the low-temperature intensity observed at these positions via neutron scattering. Such effects may mimic the formation of a structural superlattice or the strengthening of antiferromagnetic order of NCCO, but the intrinsic mechanism may be identified through careful and systematic experimentation. For typical reduction conditions, the (Nd,Ce)2O3 volume fraction is ~1%, and the secondary-phase layers exhibit long-range order parallel to the NCCO CuO2 sheets and are 50-100 angstromsthick. The presence of the secondary phase should also be taken into account in the analysis of other experiments on NCCO, such as transport measurements.Comment: 15 pages, 17 figures, submitted to Phys. Rev.

    Fusion of radioactive 132^{132}Sn with 64^{64}Ni

    Full text link
    Evaporation residue and fission cross sections of radioactive 132^{132}Sn on 64^{64}Ni were measured near the Coulomb barrier. A large sub-barrier fusion enhancement was observed. Coupled-channel calculations including inelastic excitation of the projectile and target, and neutron transfer are in good agreement with the measured fusion excitation function. When the change in nuclear size and shift in barrier height are accounted for, there is no extra fusion enhancement in 132^{132}Sn+64^{64}Ni with respect to stable Sn+64^{64}Ni. A systematic comparison of evaporation residue cross sections for the fusion of even 112124^{112-124}Sn and 132^{132}Sn with 64^{64}Ni is presented.Comment: 9 pages, 11 figure

    Many-electron tunneling in atoms

    Get PDF
    A theoretical derivation is given for the formula describing N-electron ionization of atom by a dc field and laser radiation in tunneling regime. Numerical examples are presented for noble gases atoms.Comment: 11 pages, 1 EPS figure, submitted to JETP (Jan 99

    Fragment Production in Non-central Collisions of Intermediate Energy Heavy Ions

    Full text link
    The defining characteristics of fragment emission resulting from the non-central collision of 114Cd ions with 92Mo target nuclei at E/A = 50 MeV are presented. Charge correlations and average relative velocities for mid-velocity fragment emission exhibit significant differences when compared to standard statistical decay. These differences associated with similar velocity dissipation are indicative of the influence of the entrance channel dynamics on the fragment production process
    corecore