272 research outputs found

    Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi

    Get PDF
    Calcification of the cosmopolitan coccolithophore species Emiliania huxleyi was investigated in relation to the cell division cycle with the use of batch cultures. With a 12 : 12 h light : dark cycle, the population was synchronised to undergo division as a cohort, simultaneously passing through the G1 (assimilation), S (DNA replication), and G2+M (cell division and mitosis) phases. Cell division was followed with the use of quantitative DNA staining and flow cytometry. Simultaneously, carbon-14 (14C) assimilation in organic and inorganic carbon as well as cell abundance, size, and organic nitrogen content were measured at 2-h intervals. In additional experiments, changes in calcification and cell cycle stages were investigated in nitrogen-, phosphorus-, and light-limited cultures. Calcification occurred only during the G1 cell cycle phase, as seen by the very tight correlation between the percentage of cells in G1 and calcification during the dark period. When growth was limited by nitrogen, cells decreased in size, remained in the G1 phase, and showed a moderate increase in the cell-specific calcite content. Limitation of growth by phosphorus, however, caused a significant increase in cell size and a dramatic increase in cellular calcite. Light limitation, by slowing the growth rate, prolonged the time cells spent in the G1 phase with a corresponding increase in the cellular calcite content. These results help explain the differing responses of coccolithophorid growth to nitrogen, phosphorus, and light limitation

    Redfield Revisited: variability of C:N:P in marine microalgae and its biochemical basis

    Get PDF
    A compilation of data on the elemental composition of marine phytoplankton from published studies was used to determine the range of C:N:P. The N:P ratio of algae and cyanobacteria is very plastic in nutrient-limited cells, ranging from <5 mol N:mol P when phosphate is available greatly in excess of nitrate or ammonium to <100 mol N:mol P when inorganic N is present greatly in excess of P. Under optimal nutrient-replete growth conditions, the cellular N:P ratio is somewhat more constrained, ranging from 5 to 19 mol N:mol P, with most observations below the Redfield ratio of 16. Limited data indicate that the critical N:P that marks the transition between N- and P-limitation of phytoplankton growth lies in the range 20–50 mol N:mol P, considerably in excess of the Redfield ratio. Biochemical composition can be used to constrain the critical N:P. Although the biochemical data do not preclude the critical N:P from being as high as 50, the typical biochemical composition of nutrient-replete algae and cyanobacteria suggests that the critical N:P is more likely to lie in the range between 15 and 30. Despite the observation that the overall average N:P composition of marine particulate matter closely approximates the Redfield ratio of 16, there are significant local variations with a range from 5 to 34. Consistent with the culture studies, lowest values of N:P are associated with nitrate- and phosphate-replete conditions. The highest values of N:P are observed in oligotrophic waters and are within the range of critical N:P observed in cultures, but are not so high as to necessarily invoke P-limitation. The C:N ratio is also plastic. The average C:N ratios of nutrientreplete phytoplankton cultures, oceanic particulate matter and inorganic N and C draw-down are slightly greater than the Redfield ratio of 6.6. Neither the analysis of laboratory C:N:P data nor a more theoretical approach based on the relative abundance of the major biochemical molecules in the phytoplankton can support the contention that the Redfield N:P reflects a physiological or biochemical constraint on the elemental composition of primary production

    The Bunsen gas solubility coefficient of ethylene as a function of temperature and salinity and its importance for nitrogen fixation assays

    Get PDF
    The acetylene reduction assay is a common method for assessing nitrogen fixation in a variety of marine and freshwater systems. The method measures ethylene, the product of the conversion of the gas acetylene to its reduced form by nitrogenase. Knowledge of the solubility of ethylene in aqueous solution is crucial to the calculation of nitrogen fixation rates and depends on the temperature and salinity of the assay conditions. Despite the increasing interest in marine nitrogen fixation, no gas solubility (Bunsen) coefficients for ethylene in seawater are published to date. Here, we provide a set of equations and present semiempirically derived Bunsen coefficients for ethylene in water (ranging from 0.069 to 0.226) for a range of temperatures and salinities that are relevant for aquatic nitrogen fixation. We apply these data to nitrogen fixation scenarios at different temperatures and salinities and stress the importance of using accurate Bunsen coefficients in nitrogen fixation assays

    Direct and indirect costs of dinitrogen fixation in Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle

    Get PDF
    The recent detection of heterotrophic nitrogen (N2) fixation in deep waters of the southern Californian and Peruvian OMZ questions our current understanding of marine N2 fixation as a process confined to oligotrophic surface waters of the oceans. In experiments with Crocosphaera watsonii WH8501, a marine unicellular diazotrophic (N2 fixing) cyanobacterium, we demonstrated that the presence of high nitrate concentrations (up to 800 μM) had no inhibitory effect on growth and N2 fixation over a period of 2 weeks. In contrast, the environmental oxygen concentration significantly influenced rates of N2 fixation and respiration, as well as carbon and nitrogen cellular content of C. watsonii over a 24-h period. Cells grown under lowered oxygen atmosphere (5%) had a higher nitrogenase activity and respired less carbon during the dark cycle than under normal oxygen atmosphere (20%). Respiratory oxygen drawdown during the dark period could be fully explained (104%) by energetic needs due to basal metabolism and N2 fixation at low oxygen, while at normal oxygen these two processes could only account for 40% of the measured respiration rate. Our results revealed that under normal oxygen concentration most of the energetic costs during N2 fixation (∼60%) are not derived from the process of N2 fixation per se but rather from the indirect costs incurred for the removal of intracellular oxygen or by the reversal of oxidative damage (e.g., nitrogenase de novo synthesis). Theoretical calculations suggest a slight energetic advantage of N2 fixation relative to assimilatory nitrate uptake, when oxygen supply is in balance with the oxygen requirement for cellular respiration (i.e., energy generation for basal metabolism and N2 fixation). Taken together our results imply the existence of a niche for diazotrophic organisms inside oxygen minimum zones, which are predicted to further expand in the future ocean

    The Transfer of the Ferredoxin Gene From the Chloroplast to the Nuclear Genome Is Ancient Within the Paraphyletic Genus Thalassiosira

    Get PDF
    Ferredoxins are iron-sulfur proteins essential for a wide range of organisms because they are an electron transfer mediator involved in multiple metabolic pathways. In phytoplankton, these proteins are active in the mature chloroplasts, but the petF gene, encoding for ferredoxin, has been found either to be in the chloroplast genome or transferred to the nuclear genome as observed in the green algae and higher plant lineage. We experimentally determined the location of the petF gene in 12 strains of Thalassiosira covering three species using DNA sequencing and qPCR assays. The results showed that petF gene is located in the nuclear genome of all confirmed Thalassiosira oceanica strains (CCMP0999, 1001, 1005, and 1006) tested. In contrast, all Thalassiosira pseudonana (CCMP1012, 1013, 1014, and 1335) and Thalassiosira weissflogii (CCMP1010, 1049, and 1052) strains studied retained the gene in the chloroplast genome, as generally observed for Bacillariophyceae. Our evolutionary analyses further extend the dataset on the localization of the petF gene in the Thalassiosirales. The realization that the petF gene is nuclear-encoded in the Skeletonema genus allowed us to trace the petF gene transfer back to a single event that occurred within the paraphyletic genus Thalassiosira. Phylogenetic analyses revealed the need to reassess the taxonomic assignment of the Thalassiosira strain CCMP1616, since the genes used in our study did not cluster within the T. oceanica lineage. Our results suggest that this strains' diversification occurred prior to the ferredoxin gene transfer event. The functional transfer of petF genes provides insight into the evolutionary processes leading to chloroplast genome reduction and suggests ecological adaptation as a driving force for such chloroplast to nuclear gene transfer

    The role of the picoeukaryote Aureococcus anophagefferens in cycling of marine high molecular weight dissolved organic nitrogen

    Get PDF
    Environmental evidence suggests that Aureococcus anophagefferens (Pelagophyceae), a eukaryotic picoplankton that blooms in coastal seawaters, can outcompete other organisms because of its ability to use abundant dissolved organic nitrogen (DON). To test this hypothesis, we isolated A. anophagefferens in axenic culture and monitored its growth on high-molecular weight (HMW) DON collected from sediment pore waters, a putative source for DON in bays where blooms occur. HMW DON originating from pore water had a substantially higher protein content than surface seawater DON. We found that A. anophagefferens could deplete 25-36% of the available nitrogen in cultures with HMW DON as the sole source of nitrogen and that this corresponded well with the protein fraction in pore-water HMW DON. High rates of cell surface peptide hydrolysis and no detectable N-acetyl polysaccharide hydrolysis, together with the high percentage of hydrolyzable amino acids compared to hydrolyzable aminosugars present in the HMW DON, pointed to the protein fraction as the more likely source of nitrogen used for growth. Whether or not nitrogen scavenging from protein is a common mechanism in phytoplankton is at present unknown but needs to be investigate

    Handling Temperature Bursts Reaching 464 C: Different Microbial Strategies in the Sisters Peak Hydrothermal Chimney

    Get PDF
    The active venting Sisters Peak (SP) chimney on the Mid-Atlantic Ridge holds the current temperature record for the hottest ever measured hydrothermal fluids (400 degrees C, accompanied by sudden temperature bursts reaching 464 degrees C). Given the unprecedented temperature regime, we investigated the biome of this chimney with a focus on special microbial adaptations for thermal tolerance. The SP metagenome reveals considerable differences in the taxonomic composition from those of other hydrothermal vent and subsurface samples; these could be better explained by temperature than by other available abiotic parameters. The most common species to which SP genes were assigned were thermophilic Aciduliprofundum sp. strain MAR08-339 (11.8%), Hippea maritima (3.8%), Caldisericum exile (1.5%), and Caminibacter mediatlanticus (1.4%) as well as to the mesophilic Niastella koreensis (2.8%). A statistical analysis of associations between taxonomic and functional gene assignments revealed specific overrepresented functional categories: for Aciduliprofundum, protein biosynthesis, nucleotide metabolism, and energy metabolism genes; for Hippea and Caminibacter, cell motility and/or DNA replication and repair system genes; and for Niastella, cell wall and membrane biogenesis genes. Cultured representatives of these organisms inhabit different thermal niches; i.e., Aciduliprofundum has an optimal growth temperature of 70 degrees C, Hippea and Caminibacter have optimal growth temperatures around 55 degrees C, and Niastella grows between 10 and 37 degrees C. Therefore, we posit that the different enrichment profiles of functional categories reflect distinct microbial strategies to deal with the different impacts of the local sudden temperature bursts in disparate regions of the chimney

    Factors Influencing the Diversity of Iron Uptake Systems in Aquatic Microorganisms

    Get PDF
    Iron (Fe) is an essential micronutrient for many processes in all living cells. Dissolved Fe (dFe) concentrations in the ocean are of the order of a few nM, and Fe is often a factor limiting primary production. Bioavailability of Fe in aquatic environments is believed to be primarily controlled through chelation by Fe-binding ligands. Marine microbes have evolved different mechanisms to cope with the scarcity of bioavailable dFe. Gradients in dFe concentrations and diversity of the Fe-ligand pool from coastal to open ocean waters have presumably imposed selection pressures that should be reflected in the genomes of microbial communities inhabiting the pelagic realm. We applied a hidden Markov model (HMM)-based search for proteins related to cellular iron metabolism, and in particular those involved in Fe uptake mechanisms in 164 microbial genomes belonging to diverse taxa and occupying different aquatic niches. A multivariate statistical approach demonstrated that in phototrophic organisms, there is a clear influence of the ecological niche on the diversity of Fe uptake systems. Extending the analyses to the metagenome database from the Global Ocean Sampling expedition, we demonstrated that the Fe uptake and homeostasis mechanisms differed significantly across marine niches defined by temperatures and dFe concentrations, and that this difference was linked to the distribution of microbial taxa in these niches. Using the dN/dS ratios (which signify the rate of non-synonymous mutations) of the nucleotide sequences, we identified that genes encoding for TonB, Ferritin, Ferric reductase, IdiA, ZupT, and Fe(2+) transport proteins FeoA and FeoB were evolving at a faster rate (positive selection pressure) while genes encoding ferrisiderophore, heme and Vitamin B12 uptake systems, siderophore biosynthesis, and IsiA and IsiB were under purifying selection pressure (evolving slowly)
    corecore