4 research outputs found
METHOD OF PRODUCING PHOTOSENSITIVE LAYERS OF LEAD SELENIDE
FIELD: semiconductor material science. SUBSTANCE: invention relates to the technology of producing thin photosensitive films of lead selenide, which are widely used in devices for detecting infrared radiation in range of 1–5 mcm. Lead selenide films are deposited on a dielectric substrate from aqueous solutions containing a lead (II) salt, ethylenediamine, ammonium acetate, ammonium iodide, selenourea, during precipitation, tin (II) chloride is additionally added to the solution as an inhibitor of the selenourea oxidation process in amount of 0.0005–0.003 mol/l. Freshly deposited samples are subjected to thermal treatment at 653–673 K. EFFECT: technical result of invention is high photosensitivity of lead selenide films to infrared radiation up to 300 V/W at room temperature and up to 1,853 K at shallow cooling to −60 °C. 1 cl, 1 tbl, 3 ex.Изобретение относится к области полупроводникового материаловедения, а именно к технологии получения тонких фоточувствительных пленок селенида свинца, находящих широкое применение в приборах регистрации ИК-излучения в диапазоне 1-5 мкм. Пленки селенида свинца осаждают на диэлектрическую подложку из водных растворов, содержащих соль свинца (II), этилендиамин, ацетат аммония, йодид аммония, селеномочевину, при осаждении в раствор дополнительно вводят хлорид олова (II) в качестве ингибитора процесса окисления селеномочевины в количестве 0,0005-0,003 моль/л. Свежеосажденные образцы подвергают термообработке при 653-673 K. Технический результат изобретения: повышение фоточувствительности пленок селенида свинца к ИК-излучению до 300 В/Вт при комнатной температуре и до 1853 K при неглубоком охлаждении до -60°С. 1 табл., 3 пр
Ionic Conductivity in Ti-Doped KFeO<sub>2</sub>: Experiment and Mathematical Modeling
The structure peculiarities of K<sub>0.9</sub>Fe<sub>0.9</sub>Ti<sub>0.1</sub>O<sub>2</sub> that favor
the emergence of a superionic state
have been studied using neutron powder diffraction data as a function
of temperature. The migration paths in the structure of both undoped
and doped potassium ferrite were modeled by topological (tiling) and
DFT methods. It is shown that heating of the low-temperature phase
leads to increase of the ionic conductivity thanks to widening the
migration channels and the appearance of thermally induced cation
vacancies. The calculated migration barrier is found to not exceed
0.3 eV/ion in all phases, which is consistent with the experimental
data. Doping also increases the ionic conductivity, but up to about
10% of Ti only; then the experimental activation energy even increases.
The DFT modeling shows that it can be caused by growth of the regions
unavailable for the mobile cations; the regions are formed around
the dopant atoms
Ionic Conductivity in Ti-Doped KFeO<sub>2</sub>: Experiment and Mathematical Modeling
The structure peculiarities of K<sub>0.9</sub>Fe<sub>0.9</sub>Ti<sub>0.1</sub>O<sub>2</sub> that favor
the emergence of a superionic state
have been studied using neutron powder diffraction data as a function
of temperature. The migration paths in the structure of both undoped
and doped potassium ferrite were modeled by topological (tiling) and
DFT methods. It is shown that heating of the low-temperature phase
leads to increase of the ionic conductivity thanks to widening the
migration channels and the appearance of thermally induced cation
vacancies. The calculated migration barrier is found to not exceed
0.3 eV/ion in all phases, which is consistent with the experimental
data. Doping also increases the ionic conductivity, but up to about
10% of Ti only; then the experimental activation energy even increases.
The DFT modeling shows that it can be caused by growth of the regions
unavailable for the mobile cations; the regions are formed around
the dopant atoms