812 research outputs found

    The use of Planetary Nebulae precursors in the study of Diffuse Interstellar Bands

    Get PDF
    We present the first results of a systematic search for Diffuse Interstellar Bands in a carefully selected sample of post-AGB stars observed with high resolution optical spectroscopy. These stars are shown to be ideal targets to study this old, intriguing astrophysical problem. Our results suggest that the carrier(s) of these bands may not be present in the circumstellar environments of these evolved stars. The implications of the results obtained on the identification of the still unknown carrier(s) are discussed.Comment: 4 pages, 2 figures, proceedings of the conference 'Planetary Nebulae as Astrophysical Tools', held in Gdansk, Poland (June 28 - July 2, 2005

    A spectroscopic atlas of post-AGB stars and planetary nebulae selected from the IRAS Point Source Catalogue

    Get PDF
    Aims: We study the optical spectral properties of a sample of stars showing far infrared colours similar to those of well-known planetary nebulae. The large majority of them were unidentified sources or poorly known in the literature at the time when this spectroscopic survey started, some 15 years ago. Methods: We present low-resolution optical spectroscopy, finding charts and improved astrometric coordinates of a sample of 253 IRAS sources. Results: We have identified 103 sources as post-AGB stars, 21 as ``transition sources'', and 36 as planetary nebulae, some of them strongly reddened. Among the rest of sources in the sample, we were also able to identify 38 young stellar objects, 5 peculiar stars, and 2 Seyfert galaxies. Up to 49 sources in our spectroscopic sample do not show any optical counterpart, and most of them are suggested to be heavily obscured post-AGB stars, rapidly evolving on their way to becoming planetary nebulae. Conclusions: An analysis of the galactic distribution of the sources identified as evolved stars in the sample is presented together with a study of the distribution of these stars in the IRAS two-colour diagram. Finally, the spectral type distribution and other properties of the sources identified as post-AGB in this spectroscopic survey are discussed in the framework of stellar evolution.Comment: 69 pages, 413 figures. Accepted by Astronomy and Astrophysic

    Spectroscopy of the post-AGB star HD 101584(IRAS 11385-5517)

    Get PDF
    From an analysis of the spectrum (4000\AA to 8800\AA) of HD~101584 it is found that most of the neutral and single ionized metallic lines are in emission. The forbidden emission lines of [OI] 6300\AA and 6363\AA and [CI] 8727\AA are detected, which indicate the presence of a very low excitation nebula. The Hα\alpha, FeII 6383\AA, NaI D1_{1}, D2_{2} lines and the CaII IR triplet lines show P-Cygni profiles indicating a mass outflow. The Hα\alpha line shows many velocity components in the profile. The FeII 6383\AA also has almost the same line profile as the Hα\alpha line indicating that they are formed in the same region. From the spectrum synthesis analysis we find the atmospheric parameters to be Teff_{eff}=8500K, log g=1.5, Vturb_{turb}=13km~s1^{-1} and [Fe/H]=0.0. From an analysis of the absorption lines the photospheric abundances of some of the elements are derived. Carbon and nitrogen are found to be overabundant. From the analysis of Fe emission lines we derived Texi_{exi}=6100K±\pm200 for the emission line region.Comment: To appear in A&A, 15 pages, 11 figure

    Modeling dust emission in PN IC 418

    Full text link
    We investigated the infrared (IR) dust emission from PN IC 418, using a detailed model controlled by a previous determination of the stellar properties and the characteristics of the photoionized nebula, keeping as free parameters the dust types, amounts and distributions relative to the distance of the central star. The model includes the ionized region and the neutral region beyond the recombination front (Photodissociation region, or PDR), where the [OI] and [CII] IR lines are formed. We succeeded in reproducing the observed infrared emission from 2 to 200~\mm. The global energy budget is fitted by summing up contributions from big grains of amorphous carbon located in the neutral region and small graphite grains located in the ionized region (closer to the central star). Two emission features seen at 11.5 and 30~\mm are also reproduced by assuming them to be due to silicon carbide (SiC) and magnesium and iron sulfides (Mgx_xFe1x_{1-x}S), respectively. For this, we needed to consider ellipsoidal shapes for the grains to reproduce the wavelength distribution of the features. Some elements are depleted in the gaseous phase: Mg, Si, and S have sub-solar abundances (-0.5 dex below solar by mass), while the abundance of C+N+O+Ne by mass is close to solar. Adding the abundances of the elements present in the dusty and gaseous forms leads to values closer to but not higher than solar, confirming that the identification of the feature carriers is plausible. Iron is strongly depleted (3 dex below solar) and the small amount present in dust in our model is far from being enough to recover the solar value. A remaining feature is found as a residue of the fitting process, between 12 and 25~\mm, for which we do not have identification.Comment: Accepted for publication in Astronomy & Astrophysics. V2: adding reference

    Fluxes and fluences of SEP events derived from SOLPENCO

    No full text
    International audienceWe have developed aran04 a tool for rapid predictions of proton flux and fluence profiles observed during gradual solar energetic particle (SEP) events and upstream of the associated traveling interplanetary shocks. This code, named SOLPENCO (for SOLar Particle ENgineering COde), contains a data base with a large set of interplanetary scenarios under which SEP events develop. These scenarios are basically defined by the solar longitude of the parent solar activity, ranging from E75 to W90, and by the position of the observer, located at 0.4 AU or at 1.0 AU, from the Sun. We are now analyzing the performance and reliability of SOLPENCO. We address here two features of SEP events especially relevant to space weather purposes: the peak flux and the fluence. We analyze how the peak flux and the fluence of the synthetic profiles generated by SOLPENCO vary as a function of the strength of the CME-driven shock, the heliolongitude of the solar parent activity and the particle energy considered. In particular, we comment on the dependence of the fluence on the radial distance of the observer (which does not follow an inverse square law), and we draw conclusions about the influence of the shock as a particle accelerator in terms of its evolving strength and the heliolongitude of the solar site where the SEP event originated

    Why are massive O-rich AGB stars in our Galaxy not S-stars?

    Full text link
    We present the main results derived from a chemical analysis carried out on a large sample of galactic O-rich AGB stars using high resolution optical spectroscopy (R~40,000-50,000) with the intention of studying their lithium abundances and/or possible s-process element enrichment. Our chemical analysis shows that some stars are lithium overabundant while others are not. The observed lithium overabundances are interpreted as a clear signature of the activation of the so-called ``Hot Bottom Burning'' (HBB) process in massive galactic O-rich AGB stars, as predicted by the models. However, these stars do not show the zirconium enhancement (taken as a representative for the s-process element enrichment) associated to the third dredge-up phase following thermal pulses. Our results suggest that the more massive O-rich AGB stars in our Galaxy behave differently from those in the Magellanic Clouds, which are both Li- and s-process-rich (S-type stars). Reasons for this unexpected result are discussed. We conclude that metallicity is probably the main responsible for the differences observed and suggest that it may play a more important role than generally assumed in the chemical evolution of AGB stars.Comment: 4 pages, 2 figures, to appear in the proceedings of the conference "Planetary Nebulae as astronomical tools" held in Gdansk, Poland, jun 28/jul 02, 200

    Infrared Study of Fullerene Planetary Nebulae

    Full text link
    We present a study of 16 PNe where fullerenes have been detected in their Spitzer spectra. This large sample of objects offers an unique opportunity to test conditions of fullerene formation and survival under different metallicity environments as we are analyzing five sources in our own Galaxy, four in the LMC, and seven in the SMC. Among the 16 PNe under study, we present the first detection of C60 (possibly also C70) fullerenes in the PN M 1-60 as well as of the unusual 6.6, 9.8, and 20 um features (possible planar C24) in the PN K 3-54. Although selection effects in the original samples of PNe observed with Spitzer may play a potentially significant role in the statistics, we find that the detection rate of fullerenes in C-rich PNe increases with decreasing metallicity (5% in the Galaxy, 20% in the LMC, and 44% in the SMC). CLOUDY photoionization modeling matches the observed IR fluxes with central stars that display a rather narrow range in effective temperature (30,000-45,000 K), suggesting a common evolutionary status of the objects and similar fullerene formation conditions. The observed C60 intensity ratios in the Galactic sources confirm our previous finding in the MCs that the fullerene emission is not excited by the UV radiation from the central star. CLOUDY models also show that line- and wind-blanketed model atmospheres can explain many of the observed [NeIII]/[NeII] ratios by photoionization suggesting that possibly the UV radiation from the central star, and not shocks, are triggering the decomposition of the circumstellar dust grains. With the data at hand, we suggest that the most likely explanation for the formation of fullerenes and graphene precursors in PNe is that these molecular species are built from the photo-chemical processing of a carbonaceous compound with a mixture of aromatic and aliphatic structures similar to that of HAC dust.Comment: Accepted for publication in ApJ (43 pages, 11 figures, and 4 tables). Small changes to fit the proof-corrected article to be published in Ap
    corecore