14 research outputs found

    Conceptual Design of Beryllium Target for the KLF Project

    Get PDF
    The Kaon Production Target (KPT) is an important component of the proposed K-Long facility which will be operated in JLab Hall~D, targeting strange baryon and meson spectroscopy. In this note we present a conceptual design for the Be-target assembly for the planned K-Long beam line, which will be used along with the GlueX spectrometer in its standard configuration for the proposed experiments. The high quality 12-GeV CEBAF electron beam enables production of a KL_L flux at the GlueX target on the order of 1×104KL/sec1\times 10^4 K_L/sec, which exceeds the KL_L flux previously attained at SLAC by three orders of magnitude. An intense KL_L beam would open a new window of opportunity not only to locate "missing resonances" in the strange hadron spectrum, but also to establish their properties by studying different decay channels systematically. The most important and radiation damaging background in KL_L production is due to neutrons. The Monte Carlo simulations for the proposed conceptual design of KPT show that the resulting neutron and gamma flux lead to a prompt radiation dose rate for the KLF experiment that is below the JLab Radiation Control Department radiation dose rate limits in the experimental hall and at the site boundary, and will not substantially affect the performance of the spectrometer.Comment: 9 pages, 9 figure

    Phenological shifts of abiotic events, producers and consumers across a continent

    Get PDF
    Ongoing climate change can shift organism phenology in ways that vary depending on species, habitats and climate factors studied. To probe for large-scale patterns in associated phenological change, we use 70,709 observations from six decades of systematic monitoring across the former Union of Soviet Socialist Republics. Among 110 phenological events related to plants, birds, insects, amphibians and fungi, we find a mosaic of change, defying simple predictions of earlier springs, later autumns and stronger changes at higher latitudes and elevations. Site mean temperature emerged as a strong predictor of local phenology, but the magnitude and direction of change varied with trophic level and the relative timing of an event. Beyond temperature-associated variation, we uncover high variation among both sites and years, with some sites being characterized by disproportionately long seasons and others by short ones. Our findings emphasize concerns regarding ecosystem integrity and highlight the difficulty of predicting climate change outcomes. The authors use systematic monitoring across the former USSR to investigate phenological changes across taxa. The long-term mean temperature of a site emerged as a strong predictor of phenological change, with further imprints of trophic level, event timing, site, year and biotic interactions.Peer reviewe

    Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology

    Get PDF
    We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. The data cover the period 1890-2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. The database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for first spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staff of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change.Peer reviewe

    Mechanical and Thermophysical Properties of Carbon Fiber-Reinforced Polyethersulfone

    No full text
    In this study, the mechanical and thermophysical properties of carbon fiber-reinforced polyethersulfone are investigated. To enhance the interfacial interaction between carbon fibers and the polymer matrix, the surface modification of carbon fibers by thermal oxidation is conducted. By means of AFM and X-ray spectroscopy, it is determined that surface modification changes the morphology and chemical composition of carbon fibers. It is shown that surface modification dramatically increases the mechanical properties of the composites. Thus, flexural strength and the E-modulus of the composites reinforced with modified fibers reached approximately 962 MPa and 60 GPa, respectively, compared with approximately 600 MPa and 50 GPa for the composites reinforced with the initial ones. The heat deflection temperatures of the composites reinforced with the initial and modified fibers were measured. It is shown that composites reinforced with modified fibers lose their stability at temperatures of about 211 °C, which correlates with the glass transition temperature of the PES matrix. The thermal conductivity of the composites with different fiber content is investigated in two directions: in-plane and transverse to layers of carbon fibers. The obtained composites had a relatively high realization of the thermal conductive properties of carbon fibers, up to 55–60%

    On the structural peculiarities of self-reinforced composite materials based on UHMWPE fibers

    No full text
    The structure of self-reinforced composites (SRCs) based on ultra-high molecular weight polyethylene (UHMWPE) was studied by means of Wide-Angle X-ray Scattering (WAXS), X-ray tomography, Raman spectroscopy, Scanning Electron Microscopy (SEM) and in situ tensile testing in combination with advanced processing tools to determine the correlation between the processing conditions, on one hand, and the molecular structure and mechanical properties, on the other. SRCs were fabricated by hot compaction of UHMWPE fibers at different pressure and temperature combinations without addition of polymer matrix or softener. It was found by WAXS that higher compaction temperatures led to more extensive melting of fibers with the corresponding reduction of the Herman's factor reflecting the degree of molecular orientation, while the increase of hot compaction pressure suppressed the melting of fibers within SRCs at a given temperature. X-ray tomography proved the absence of porosity while polarized light Raman spectroscopy measurements for both longitudinal and perpendicular fiber orientations showed qualitatively the anisotropy of SRC samples. SEM revealed that the matrix was formed by interlayers of molten polymer entrapped between fibers in SRCs. Moreover, in situ tensile tests demonstrated the increase of Young's modulus and tensile strength with increasing temperature

    Transport Properties of Thermoplastic R-BAPB Polyimide: Molecular Dynamics Simulations and Experiment

    No full text
    The present work evaluates the transport properties of thermoplastic R-BAPB polyimide based on 1,3-bis(3,3′,4,4′-dicarboxyphenoxy)benzene (dianhydride R) and 4,4′-bis(4-aminophenoxy)biphenyl (diamine BAPB). Both experimental studies and molecular dynamics simulations were applied to estimate the diffusion coefficients and solubilities of various gases, such as helium (He), oxygen (O2), nitrogen (N2), and methane (CH4). The validity of the results obtained was confirmed by studying the correlation of the experimental solubilities and diffusion coefficients of He, O2, and N2 in R-BAPB, with their critical temperatures and the effective sizes of the gas molecules, respectively. The solubilities obtained in the molecular dynamics simulations are in good quantitative agreement with the experimental data. A good qualitative relationship between the simulation results and the experimental data is also observed when comparing the diffusion coefficients of the gases. Analysis of the Robeson plots shows that R-BAPB has high selectivity for He, N2, and CO2 separation from CH4, which makes it a promising polymer for developing gas-separation membranes. From this point of view, the simulation models developed and validated in the present work may be put to effective use for further investigations into the transport properties of R-BAPB polyimide and nanocomposites based on it

    Large scale analysis of amino acid substitutions in bacterial proteomics

    Get PDF
    Background: Proteomics of bacterial pathogens is a developing field exploring microbial physiology, gene expression and the complex interactions between bacteria and their hosts. One of the complications in proteomic approach is micro- and macro-heterogeneity of bacterial species, which makes it impossible to build a comprehensive database of bacterial genomes for identification, while most of the existing algorithms rely largely on genomic data. Results: Here we present a large scale study of identification of single amino acid polymorphisms between bacterial strains. An ad hoc method was developed based on MS/MS spectra comparison without the support of a genomic database. Whole-genome sequencing was used to validate the accuracy of polymorphism detection. Several approaches presented earlier to the proteomics community as useful for polymorphism detection were tested on isolates of Helicobacter pylori, Neisseria gonorrhoeae and Escherichia coli. Conclusion: The developed method represents a perspective approach in the field of bacterial proteomics allowing to identify hundreds of peptides with novel SAPs from a single proteome
    corecore