83 research outputs found

    In situ TEM oxidation study of Fe thin-film transformation to single-crystal magnetite nanoparticles

    Get PDF
    In this work, we present an in situ transmission electron microscopy (TEM) study of Fe thin films to Fe nanoparticle formation and their oxidation to single-crystal magnetite nanoparticles. Amorphous Fe thin films were prepared by sputtering on TEM carbon grids. The thin Fe films were continuously heated in situ from room temperature to 700 °C under vacuum (4 × 10–4 Pa). With the increase in temperature, the continuity of the thin film starts breaking, and Fe nanoparticle nucleation centers are formed. At 600 °C, the thin film transforms into metallic Fe nanoparticles (NPs) with a small presence of different Fe oxide NPs. Further increase in the temperature to 700 °C resulted in the full oxidation of the NPs (i.e., no core–shell were found). Zero-loss energy filtered diffraction and HRTEM analysis of the lattice spacing reveals that all NPs have fully transformed into single-phase magnetite NPs. The structural study of the magnetite NPs shows that magnetite NPs are free of antiphase domain boundary defects. This work demonstrates that under low partial pressure of oxygen at elevated temperatures a complete oxidation of Fe NPs into magnetite single-crystal nanoparticles can be achieved

    Spatially resolved variations in reflectivity across iron oxide thin films

    Get PDF
    The spin polarising properties of the iron oxide magnetite (Fe3O4) make it attractive for use in spintronic devices, but its sensitivity to compositional and structural variations make it challenging to prepare reli- ably. Infrared microspectroscopy and modelling are used to determine the spatial variation in the chem- ical composition of three thin films of iron oxide; one prepared by pulsed laser deposition (PLD), one by molecular beam epitaxy (MBE) deposition of iron whilst simultaneously flowing oxygen into the chamber and one by flowing oxygen only once deposition is complete. The technique is easily able to distinguish between films which contain metallic iron and different iron oxide phases as well as spatial variations in composition across the films. The film grown by post-oxidising iron is spatially uniform but not fully oxi- dised, the film grown by simultaneously oxidising iron showed spatial variation in oxide composition while the film grown by PLD was spatially uniform magnetite

    Influence of gas environment and heating on atomic structures of platinum nanoparticle catalysts for proton-exchange membrane fuel cells

    Get PDF
    Atomic-scale relaxations of platinum nanoparticles (Pt NPs) for fuel-cell catalysts are evaluated by spherical-aberration corrected environmental transmission electron microscopy (ETEM) under reference high-vacuum and N2 atmospheres, and then under reactive H2, CO and O2 atmospheres, combined with ex situ durability test using an electrochemical half-cell. In high-vacuum, increasing roughness due to continuous relaxation of surface-adsorbed Pt atoms is quantified in real-space. Under H2 and N2 atmospheres at a critical partial pressure of 1 × 10-2 Pa the stability of the surface facets is for the first time found to be improved. The adsorption behaviour of CO molecules is investigated using experimentally measured Pt-Pt bond lengths on the topmost surface layer of Pt NPs. The deactivation of Pt NPs in the anode environment of a proton-exchange-membrane fuel-cell is demonstrated at the atomic-scale in the ETEM, and the transformation of NPs into disordered nanoclusters is systematically quantified using the partial size distribution of Pt atomic clusters under controlled heating experiments at 423, 573 and 723 K

    Structural evolution of carbon dots during low temperature pyrolysis

    Get PDF
    Carbon dots (CDs) are an emerging class of photoluminescent material. Their unique optical properties arise from the discrete energy levels in their electronic states, which directly relate to their crystalline and chemical structure. It is expected that when CDs go through structural changes via chemical reduction or thermal annealing, their energy levels will be altered, inducing unique optoelectronic properties such as solid-state photoluminescence (PL). However, the detailed structural evolution and how the optoelectronic characteristics of CDs are affected remain unclear. Therefore, it is of fundamental interest to understand how the structure of CDs prepared by hydrothermal carbonisation (HTC) rearranges from a highly functionalised disordered structure into a more ordered graphitic structure. In this paper, detailed structural characterisation and in situ TEM were conducted to reveal the structural evolution of CDs during the carbonisation process, which have demonstrated a growth in aromatic domains and reduction in oxidation sites. These structural features are correlated with their near-infrared (NIR) solid-state PL properties, which may find a lot of practical applications such as temperature sensing, solid-state display lighting and anti-counterfeit security inks

    Carbon Nitride as a Ligand: Selective Hydrogenation of Terminal Alkenes using [(η5-C5Me5)IrCl(g-C3N4-κ2N, N')]Cl : Selective Hydrogenation of Terminal Alkenes using [(η5-C5Me5)IrCl(g-C3N4-κ2N, N')]Cl

    Get PDF
    Anchoring a homogeneous catalyst onto a heterogeneous support facilitates separation of the product from the catalyst, and catalyst-substrate interactions can also modify reactivity. Herein we describe the synthesis of composite materials comprising carbon nitride (g-C 3 N 4 ) as the heterogeneous support and the well established homogeneous catalyst moiety [Cp*IrCl] + (where Cp* = η 5 -C 5 Me 5 ), commonly used for catalytic hydrogenation. Coordination of [Cp*IrCl] + to g-C 3 N 4 occurs directly at exposed edge sites with a κ 2 N, N' binding motif, leading to a primary inner coordination sphere analogous to known homogeneous complexes of the general class [Cp*IrCl(NN-κ 2 N, N' )] + (where N, N' = a bidentate nitrogen ligand). Hydrogenation of unsaturated substrates using the composite catalyst is selective for terminal alkenes, which is attributed to the restricted steric environment of the outer coordination sphere at the edge-sites of g-C 3 N 4

    3D self-assembled polar vs. non-polar NiO nanoparticles nanoengineered from turbostratic Ni3(OH)4(NO3)2 and ordered β-Ni(OH)2 intermediates

    Get PDF
    A surfactant-free ammonia and carbamide precursor-modulated engineering of self-assembled flower-like 3D NiO nanostructures based on ordered β-Ni(OH)2 and turbostratic Ni3(OH)4(NO3)2 nanoplate-structured intermediates is reported. By employing complementary structural and spectroscopic techniques, fundamental insights into structural and chemical transformations from intermediates to NiO nanoparticles (NPs) are provided. FTIR, Raman and DSC analyses show that the transformation of intermediates to NiO NPs involves subsequent loss of NO3− and OH− species through a double-step phase transformation at 306 and 326 °C corresponding to the loss of free interlayer ions and H2O species, respectively, followed by the loss of chemically bonded OH− and NO3− ions. Transformation to NiO NPs via the ammonia route proceeds as single-phase transition, accompanied with a loss of OH− species at 298 °C. The full transformation to NiO NPs of both intermediates is achieved at 350 °C through annealing in the air atmosphere. Ammonia-derived NPs maintain nanoflower morphology by self-assembling into nanoplates, which is enabled by H2O-mediated adhesion on the NiO NPs’ {100} neutral surfaces. Structural transformations of turbostratic Ni3(OH)4(NO3)2 nanoplates result in the formation of NiO NPs dominantly shaped by inert polar OH-terminated (111) atomic planes, leading to the loss of the initial self-assembled 3D structure. DFT calculations support these observations, confirming that H2O adsorbs dissociatively on polar {111} surfaces, while only physisorption is energetically feasible on {100} surfaces. NiO NPs obtained via two different routes have overall different properties: carbamide-derived NPs are 3 times larger (15.5 vs. 5.4 nm), possess a larger band gap (3.6 vs. 3.2 eV) and are more Ni deficient. The intensity ratio of surface optical (SO) modes to transversal and longitudinal optical modes is ∼40 times higher in the NiO NPs obtained from β-Ni(OH)2 compared to Ni3(OH)4(NO3)2-derived NPs. The SO phonon lifetime is an order of magnitude shorter in NiO obtained from β-Ni(OH)2, reflecting a much smaller NP size. The choice of a precursor defines the size, morphology, crystallographic surface orientations and band gap of the NiO NPs, with Ni deficiency providing pathways for utilizing them as p-type materials, allowing for the precise nanoengineering of polar and neutral surface-dominated NiO NPs, which is of exceptional importance for use in catalysis

    Predictive Removal of Interfacial Defect-Induced Trap States between Titanium Dioxide Nanoparticles via Sub-Monolayer Zirconium Coating

    Get PDF
    First principles modeling of anatase TiO2 surfaces and their interfacial contacts shows that defect-induced trap states within the band gap arise from intrinsic structural distortions, and these can be corrected by modification with Zr(IV) ions. Experimental testing of these predictions has been undertaken using anatase nanocrystals modified with a range of Zr precursors and characterized using structural and spectroscopic methods. Continuous-wave electron paramagnetic resonance (EPR) spectroscopy revealed that under illumination, nanoparticle-nanoparticle interfacial hole trap states dominate, which are significantly reduced after optimizing the Zr doping. Fabrication of nanoporous films of these materials and charge injection using electrochemical methods shows that Zr doping also leads to improved electron conductivity and mobility in these nanocrystalline systems. The simple methodology described here to reduce the concentration of interfacial defects may have wider application to improving the efficiency of systems incorporating metal oxide powders and films including photocatalysts, photovoltaics, fuel cells, and related energy applications

    Spatially resolved variations in reflectivity across iron oxide thin films

    Get PDF
    The spin polarising properties of the iron oxide magnetite (Fe3O4) make it attractive for use in spintronic devices, but its sensitivity to compositional and structural variations make it challenging to prepare reli- ably. Infrared microspectroscopy and modelling are used to determine the spatial variation in the chem- ical composition of three thin films of iron oxide; one prepared by pulsed laser deposition (PLD), one by molecular beam epitaxy (MBE) deposition of iron whilst simultaneously flowing oxygen into the chamber and one by flowing oxygen only once deposition is complete. The technique is easily able to distinguish between films which contain metallic iron and different iron oxide phases as well as spatial variations in composition across the films. The film grown by post-oxidising iron is spatially uniform but not fully oxi- dised, the film grown by simultaneously oxidising iron showed spatial variation in oxide composition while the film grown by PLD was spatially uniform magnetite
    • …
    corecore