6 research outputs found

    Graph Interpolation Grammars: a Rule-based Approach to the Incremental Parsing of Natural Languages

    Get PDF
    Graph Interpolation Grammars are a declarative formalism with an operational semantics. Their goal is to emulate salient features of the human parser, and notably incrementality. The parsing process defined by GIGs incrementally builds a syntactic representation of a sentence as each successive lexeme is read. A GIG rule specifies a set of parse configurations that trigger its application and an operation to perform on a matching configuration. Rules are partly context-sensitive; furthermore, they are reversible, meaning that their operations can be undone, which allows the parsing process to be nondeterministic. These two factors confer enough expressive power to the formalism for parsing natural languages.Comment: 41 pages, Postscript onl

    Graph Interpolation Grammars as Context-Free Automata

    Get PDF
    A derivation step in a Graph Interpolation Grammar has the effect of scanning an input token. This feature, which aims at emulating the incrementality of the natural parser, restricts the formal power of GIGs. This contrasts with the fact that the derivation mechanism involves a context-sensitive device similar to tree adjunction in TAGs. The combined effect of input-driven derivation and restricted context-sensitiveness would be conceivably unfortunate if it turned out that Graph Interpolation Languages did not subsume Context Free Languages while being partially context-sensitive. This report sets about examining relations between CFGs and GIGs, and shows that GILs are a proper superclass of CFLs. It also brings out a strong equivalence between CFGs and GIGs for the class of CFLs. Thus, it lays the basis for meaningfully investigating the amount of context-sensitiveness supported by GIGs, but leaves this investigation for further research

    Graph interpolation grammars as context-free automata

    No full text
    Theme 3 - Interaction homme-machine, images, donnees, connaissances - Projet AtollSIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : 14802 E, issue : a.1998 n.3456 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Graph interpolation grammars : a rule-based approach to the incremental parsing of natural languages

    No full text
    Theme 3 - Interaction homme-machine, images, donnees, connaissances. Projet AtollSIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : 14802 E, issue : a.1998 n.3390 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Discovery of ( S

    No full text

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
    corecore