33 research outputs found

    The diamond Nitrogen-Vacancy center as a probe of random fluctuations in a nuclear spin ensemble

    Full text link
    New schemes that exploit the unique properties of Nitrogen-Vacancy (NV) centers in diamond are presently being explored as a platform for high-resolution magnetic sensing. Here we focus on the ability of a NV center to monitor an adjacent mesoscopic nuclear spin bath. For this purpose, we conduct comparative experiments where the NV spin evolves under the influence of surrounding 13C nuclei or, alternatively, in the presence of asynchronous AC fields engineered to emulate bath fluctuations. Our study reveals substantial differences that underscore the limitations of the semi-classical picture when interpreting and predicting the outcome of experiments designed to probe small nuclear spin ensembles. In particular, our study elucidates the NV center response to bath fluctuations under common pulse sequences, and explores a detection protocol designed to probe time correlations of the nuclear spin bath dynamics. Further, we show that the presence of macroscopic nuclear spin order is key to the emergence of semi-classical spin magnetometry.Comment: 30 pages, 4 figure

    Magnetometry of random AC magnetic fields using a single Nitrogen-Vacancy center

    Full text link
    We report on the use of a single NV center to probe fluctuating AC magnetic fields. Using engineered currents to induce random changes in the field amplitude and phase, we show that stochastic fluctuations reduce the NV center sensitivity and, in general, make the NV response field-dependent. We also introduce two modalities to determine the field spectral composition, unknown a priori in a practical application. One strategy capitalizes on the generation of AC-field-induced coherence 'revivals', while the other approach uses the time-tagged fluorescence intensity record from successive NV observations to reconstruct the AC field spectral density. These studies are relevant for magnetic sensing in scenarios where the field of interest has a non-trivial, stochastic behavior, such as sensing unpolarized nuclear spin ensembles at low static magnetic fields.Comment: 11 pages, 3 figure

    METHOD FOR HYPER-POLARIZING NUCLEAR SPNS AT ARBTRARY MAGNETIC FELDS

    Get PDF
    A method of dynamically polarizing the nuclear spin host of nitrogen-vacancy (NV) centers in diamond is provided. The method uses optical, microwave and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Nitrogen nuclear spin initialization approaching 80% at room temperature is demonstrated both in ensemble and single NV centers without relying on level anti-crossings. This makes the method applicable at arbitrary magnetic fields

    High-resolution correlation spectroscopy of 13C spins near a nitrogen-vacancy centre in diamond

    Get PDF
    Spin complexes comprising the nitrogen-vacancy centre and neighbouring spins are being considered as a building block for a new generation of spintronic and quantum information processing devices. As assembling identical spin clusters is difficult, new strategies are being developed to determine individual node structures with the highest precision. Here we use a pulse protocol to monitor the time evolution of the 13C ensemble in the vicinity of a nitrogenvacancy centre. We observe long-lived time correlations in the nuclear spin dynamics, limited by nitrogen-vacancy spin–lattice relaxation. We use the host 14N spin as a quantum register and demonstrate that hyperfine-shifted resonances can be separated upon proper nitrogenvacancy initialization. Intriguingly, we find that the amplitude of the correlation signal exhibits a sharp dependence on the applied magnetic field.We discuss this observation in the context of the quantum-to-classical transition proposed recently to explain the field dependence of the spin cluster dynamics

    High-resolution correlation spectroscopy of 13C spins near a nitrogen-vacancy centre in diamond

    Get PDF
    Spin complexes comprising the nitrogen-vacancy centre and neighbouring spins are being considered as a building block for a new generation of spintronic and quantum information processing devices. As assembling identical spin clusters is difficult, new strategies are being developed to determine individual node structures with the highest precision. Here we use a pulse protocol to monitor the time evolution of the 13C ensemble in the vicinity of a nitrogenvacancy centre. We observe long-lived time correlations in the nuclear spin dynamics, limited by nitrogen-vacancy spin–lattice relaxation. We use the host 14N spin as a quantum register and demonstrate that hyperfine-shifted resonances can be separated upon proper nitrogenvacancy initialization. Intriguingly, we find that the amplitude of the correlation signal exhibits a sharp dependence on the applied magnetic field.We discuss this observation in the context of the quantum-to-classical transition proposed recently to explain the field dependence of the spin cluster dynamics
    corecore