We report on the use of a single NV center to probe fluctuating AC magnetic
fields. Using engineered currents to induce random changes in the field
amplitude and phase, we show that stochastic fluctuations reduce the NV center
sensitivity and, in general, make the NV response field-dependent. We also
introduce two modalities to determine the field spectral composition, unknown a
priori in a practical application. One strategy capitalizes on the generation
of AC-field-induced coherence 'revivals', while the other approach uses the
time-tagged fluorescence intensity record from successive NV observations to
reconstruct the AC field spectral density. These studies are relevant for
magnetic sensing in scenarios where the field of interest has a non-trivial,
stochastic behavior, such as sensing unpolarized nuclear spin ensembles at low
static magnetic fields.Comment: 11 pages, 3 figure