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High-resolution correlation spectroscopy of 13C
spins near a nitrogen-vacancy centre in diamond
Abdelghani Laraoui1, Florian Dolde2, Christian Burk2, Friedemann Reinhard2, Jörg Wrachtrup2

& Carlos A. Meriles1

Spin complexes comprising the nitrogen-vacancy centre and neighbouring spins are being

considered as a building block for a new generation of spintronic and quantum information

processing devices. As assembling identical spin clusters is difficult, new strategies are being

developed to determine individual node structures with the highest precision. Here we use a

pulse protocol to monitor the time evolution of the 13C ensemble in the vicinity of a nitrogen-

vacancy centre. We observe long-lived time correlations in the nuclear spin dynamics, limited

by nitrogen-vacancy spin–lattice relaxation. We use the host 14N spin as a quantum register

and demonstrate that hyperfine-shifted resonances can be separated upon proper nitrogen-

vacancy initialization. Intriguingly, we find that the amplitude of the correlation signal exhibits

a sharp dependence on the applied magnetic field. We discuss this observation in the context

of the quantum-to-classical transition proposed recently to explain the field dependence of

the spin cluster dynamics.
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H
arnessing the quantum behaviour of nanoscopic physical
systems is at the centre of a broad cross-disciplinary
effort, driven by the promise of various applications for

information processing and secure communication1. The
prospect of performance gains is motivating interest in new
devices for existing or new functions—particularly, quantum-
based information-processing protocols—as well as new
paradigms for system architectures beyond present
semiconductor technology. Although a dominant technology
platform for these applications has yet to emerge,
implementations that exploit the quantum properties of
individual atomic dopants in a solid-state matrix are of
particular importance, as this approach has features that make
it well positioned to overcome the obstacles to scaling1,2.
Prominent in this latter category is the electronic spin of the
nitrogen-vacancy (NV) centre, where the low phonon density and
the weak spin–orbit coupling typical of carbon structures leads to
long spin coherence times under ambient conditions3. These
isolated spins may be located using confocal microscopy,
initialized via optical pumping and read out through spin-
dependent photoluminescence measurements4. Various alternate
architectures for NV-based quantum information processing
(QIP) have been proposed, typically relying on local spin clusters
comprising one (or more) NV centre, as well as ancillary
electronic and nuclear spin qubits in its vicinity5,6. Flying qubits
(for example, photons) encoded with information on the NV spin
alignment are often envisioned as the vehicle to quickly transport
information between remote processing units7,8.

In the absence of schemes to deterministically create identical
atomic groupings, the implementation of QIP devices as
described above relies on the ability to determine the exact
composition and structure of each spin cluster. This information
will be important, for example, to identify weakly coupled nuclear
registers in a given spin node9–11, or to control the set of physical
qubits required to backup the action of a single logical qubit in an
error-correction protocol12.

Here we introduce a new strategy for the characterization of
the spin bath in the vicinity of a given NV centre. Our approach
exploits the comparatively slow evolution of the bath to establish
a correlation between the phases picked up by the NV centre in
contact with the 13C spins at two different times; upon Fourier-
transforming the resulting signal, we manage to spectroscopically
separate carbon nuclear spins with differing hyperfine coupling
constants. Singular about this strategy is that the resolution of the
resulting 13C spectrum is inversely proportional to the spin–
lattice relaxation time T1 characterizing the probe spin. Besides
the NV centre, the latter can be, for example, a long-lived nuclear
register, a concept we also demonstrate by making use of the
nuclear spin of the host 14N.

Remarkably, we find that the amplitude of the correlation
signal shows a sigmoidal behaviour as a function of the
applied magnetic field, and abruptly collapses below a critical
value BcB10mT. Although the maximum signal amplitude
depends strongly on the chosen NV, Bc is found to be
approximately the same for all the colour centres we
investigated, thus pointing to well-defined ‘high-field’ (B4Bc)
and ‘low-field’ (BoBc) regimes. These observations suggest a
magnetic-field-induced quantum-to-classical transition, where
the spin dynamics of the quantum system comprising the NV
and neighbouring nuclear spins suddenly switches at the critical
field to a behaviour consistent with the a simple classical picture.
By properly adjusting the time it takes the NV to probe the
nuclear Overhauser field, we shift Bc to lower (or higher) values,
thus demonstrating our ability to externally control the
classicality of this mesoscale spin ensemble at a given external
magnetic field.

Results
Probing 13C spin correlations. The sample we studied in these
experiments is a natural [111] diamond crystal with a nitrogen
concentration of B10p.p.b. We use confocal microscopy to
address individual negatively charged NV centres. These defects
have an electron spin triplet ground state (3A) with a splitting
D¼ 2.87GHz; optical excitation typically preserves the spin of the
mS¼ 0 state, whereas the mS¼±1 states decay non-radiatively to
mS¼ 0 upon undergoing intersystem crossing to a metastable
singlet. This mechanism leads to spin polarization of the NV by
optical pumping and a spin-dependent photon-scattering effi-
ciency, which allows for the optical readout of the electronic spin
through the photoluminescence intensity4 (that is, mS¼ 0 is
brighter). In our experiments, we apply an external magnetic
field B along the [111] axis, which breaks the degeneracy
between the mS¼±1 state and allows us to address selectively
the mS¼ 0-mS¼±1 transitions. For this purpose, we use the
microwave field created by a thin copper wire overlaid on the
crystal surface.

Our approach builds on the notion that when a 13C coherence is
formed, the rate of coherence loss is slow, owing to the relatively
weak homonuclear couplings. Therefore, it should be possible to
monitor the bath evolution if we correlate the phases picked up by
the NV spin during consecutive interrogations of the bath at times
separated by a variable interval. Figure 1a shows the schematics of
our pulse protocol: After optical initialization of the NV centre in
the mS¼ 0 state, a microwave p/2 pulse resonant with the
mS¼ 0-mS¼ � 1 transition creates a quantum superposition
that evolves during a time 2t. We intercalate a p-pulse at the
midpoint of the interrogation period to make the accumulated
phase f1 insensitive to the spin state of the host 14N nucleus. We
use a 90� phase-shifted p/2 pulse to store a component of the NV
magnetization during a time ~t, after which we probe the 13C bath
by inducing a second Hahn-echo followed by another phase-shifted
projection pulse. Denoting with f2 the phase accumulated by the
NV spin during this second evolution period, one can show that
the resulting correlation signal is approximately given by
(Supplementary Information section on Supplementary Methods)

SC1 t;~tð Þ � sinf1 sinf2h i; ð1Þ
where we use brackets to indicate time average. The subscript is a
reminder that in deriving this formula we implicitly assume a
(semi) classical view, where 13C nuclei induce at the NV site a
random, time-fluctuating spin-noise field responsible for the
accumulated phases. We will later return to this important
consideration.

Figure 1b shows the resulting correlation signal for a given NV
centre as a function of the time interval ~t separating the first and
second interrogation periods of fixed duration 2t; in this particular
case, we use an external magnetic field B¼ 15.6mT aligned with
the NV axis. We observe a long-lasting response whose amplitude
remains virtually unchanged during the first millisecond of
evolution. Because of a reduced fluorescence contrast (30% of the
maximum possible), we chose to observe only portions of the signal
for ~t4 1ms. Figure 1c,d shows, nonetheless, well-defined,
persisting oscillations with periodicity dominated by the inverse
of the 13C Larmor frequency (6.0ms) in the applied magnetic field.
Also observable are the periodic signal beatings, indicative of
contributions at different frequencies.

Heuristically, we interpret these observations as the result of a
long-lived memory in the spin bath state: When the time interval
~tþ 2t coincides with a multiple of the 13C Larmor period, the
phases picked up by the NV centre during both interrogation
intervals are the same, thus leading to a (positive) correlation
maximum. Conversely, when 13C spins complete an odd number
of half Larmor cycles, f1 and f2 have different signs, which results
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in a (negative) correlation minimum. For the particular NV centre
of Fig. 1 (hereafter labelled as NV1), we find that the correlation
envelope decays on a time scale of B4–5ms. We note that this
lifetime is comparable to the NV spin–lattice relaxation time
T1¼ 6ms, and an order of magnitude greater than the T2 time as
determined from the Hahn-echo protocol (Fig. 1e). Further, the
notion that the NV can probe, store and compare information on
the state of the bath at two different times is consistent with the
results of Fig. 1f: Here we intercalate a light pulse of variable
duration during the bath evolution interval ~t. We find that the
correlation amplitude progressively vanishes as the green laser
pulse repumps the NV centre into mS¼ 0 before the second
interrogation period. In this limit and postulating a random phase
f2, one gets SC1 t;~tð Þ � sinf2h i � 0 in agreement with our
observations.

Dependence on the external magnetic field. The experiments
above point to a scenario where nuclear spins induce at the NV

site a random—though slowly fluctuating—magnetic field ulti-
mately responsible for f1 and f2. As shown in Fig. 2a, this
classical representation of the combined NV spin bath dynamics
breaks abruptly as one brings the external magnetic field below a
critical value BcB10mT. In this regime, we find that the corre-
lation signal vanishes completely regardless of the duration of the
interrogation periods13. Interestingly, the transition takes place
over a narrow magnetic field window (B1mT), thus hinting at
mechanisms differing from those invoked in prior studies at
variable magnetic field14,15, where the change is more gradual.
Further, the amplitude of the correlation signal varies broadly,
from B40% of the maximum possible contrast to much lower
values in the NV set we tested. In particular, some NVs show no
correlation signal—at least within our detection limit—for fields
up to 40mT.

The results in Fig. 2a share some similarities with prior studies,
where coherence is progressively lost as a quantum system
controllably couples to a mesoscale open reservoir16. In the
present case, however, the dynamics are more intricate as it is the
spin bath—an open, mesoscale system—the one being
interrogated through the quantum response of an individual
probe spin. Recent work comparing decoherence in the single-
and double-quantum NV transitions upon application of a Hahn-
echo protocol provides a more closely related initial platform to
interpret the observed behaviour17. The central idea is that
although the combined NV–13C ensemble must be generally
treated as a closed quantum system, a classical behaviour emerges
in the limit where the 13C coupling with the NV is weaker than
the nuclear Zeeman energy. In the opposite regime, entanglement
permeates the system response, thus leading to visibility loss.
Within the diamond lattice, the physical boundary between
classical and quantum 13C spins depends on the amplitude of the
applied magnetic field. At low fields, the NV decoheres from
entanglement with the quantum (that is, sufficiently close) shell of
13C spins. As the field increases, this shell progressively shrinks to
finally vanish when the applied field exceeds the NV coupling
strength to the closest 13C. The transition from one regime to the
other is abrupt, as only one strongly coupled carbon is necessary
to cause quantum decoherence.

To some extent, our results are in agreement with this picture.
For example, in Fig. 2d we compare the regime transition for two
different echo times t chosen to coincide with one half or one
fourth the Larmor period of bare 13C spins nC (black and red
dots, respectively). For the shortest interrogation time (vct¼ 1/4),
we observe a shift of Bc towards lower values, in agreement with
the idea that the effect of entanglement on the NV is mitigated by
reducing the contact time with the bath. Not shown here for
brevity is the converse, namely, Bc shifts to higher values upon
increasing t. This remarkable control over Bc comes at the price
of a reduced signal amplitude (see below Fig. 3c); the upper limit
is nCt¼ 1, where the NV picks up no net phase and the
correlation signal disappears (equation (1)).

More specifically, for B4Bc and in the limit where nuclear
spins are sufficiently far away from the NV, the correlation signal
induced by a classical, suitably small field is expected to take the
approximate form (Supplementary Information section on
Supplementary Methods)

SCl t;~tð Þ � 1
2

4gNVb
rms
C

2pnC
sin2 pnCtð Þ

� �2

cos 2pnC 2tþ~tð Þð Þ; ð2Þ

where gNV denotes the NV gyromagnetic ratio, and brms
C is the 13C

root mean square (r.m.s.) field. Equation (2) introduces a
simultaneous dependence on both the correlation and
interrogation times consistent with our observations. An
illustration is the case of NV6 (Fig. 3) where alongside the
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Figure 1 | Monitoring the spin dynamics of the 13C bath. (a) Schematics

of the pulse sequence. (b) Correlation signal of a defect (labelled NV1

hereafter) in the presence of a magnetic field B¼ 15.6mT; the 13C Larmor

frequency is nC¼ 167 kHz. Because of sensitivity limitations, only portions

of the signal were measured at times ~t greater than 1ms. In these

experiments, t is kept constant at 3ms. (c–d) Expanded views of the signal

in b at two different time intervals (purple brackets) during the bath

evolution period. Correlations persist beyond 3ms. (e) Hahn-echo signal for

NV1 exhibiting a T2 time of B0.4ms. (f) Alternate laser protocol with a

‘repolarization’ light pulse of duration tlight intercalated during the evolution

period ~t. (g) Signal amplitude at short ~t as a function of tlight. In b through e,

all microwave pulses are resonant with the mS¼0-mS¼ 1 transition, and

we use a normalized vertical scale (hereafter, maintained throughout the

text) where � 1 or þ 1, respectively, correspond to the fluorescence counts

after NV polarization with or without population inversion.
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predicted periodic response with frequency nC (Fig. 3a), we
observe the overall signal phase shifts 4pnCt anticipated in
equation (2) for different Hahn-echo times (Fig. 3b). As we
change t, we also observe a concomitant amplitude change with
maximum at vCt¼ 1/2, that is, when sin (pnCt)¼ 1 (Fig. 3c). A
vanishing signal is observed as t approaches 0 or 1/vc in
agreement with the notion that SC1 must cancel when the NV
accumulates a negligible phase (equation (1)). Further, the
measured dependence is described well by a curve proportional
to the fourth power of sin (pnCt) as predicted by equation (2)
(solid line in Fig. 3c). Finally, and given the differing 13C
environments, the r.m.s. value of the nuclear field brms

C is expected
to change broadly from one NV to another, thus explaining the
variability of the signal amplitude for fixed t (see insert in
Fig. 2a).

Although the formula above provides the correct periodicity on
t and ~t, numerical integration is generally required to derive the
exact curve shape and r.m.s. 13C field at an arbitrary NV site
(Supplementary Information section on Supplementary
Methods). The problem is that the condition gNVb

rms
C

�
nC oo 1

implicit in equation (2) is not necessarily valid in most cases, thus
rendering the sinusoidal dependence (and overall multiplicative
factor) a crude approximation. For example, from the amplitude
of the collapses observed in the Hahn-echo signal of NV6, we
numerically determine (Supplementary Information section on
Supplementary Methods) the r.m.s. value of the ‘classical’ 13C
field brms

Cl

� �
echo � 4mT. Therefore, assuming the ‘optimum’

contact time t¼ 1/(2vC) in the correlation protocol, we
calculate an r.m.s. phase frms ¼ 2gNVb

rms
C t � 2:2p in a field of

11m. This value greatly exceeds the ‘small angle’ range of the NV
response (where fj joo 1) and carries a concomitant distortion
in the shape of the expected correlation signal. In particular, as
brms
C increases, the crests and valleys of the sinusoidal response in
equation (2) gradually give way to positive and negative spikes
(Supplementary Information, section on Supplementary
Methods)13. We plot the calculated correlation signal in Fig. 3a

(blue solid line) and find good overall agreement with our
experimental observations.

There are some clues, however, pointing to a still incomplete
understanding and possibly a more complex, richer spin
dynamics. For example, as the applied magnetic field increases,
the optimum contact time t¼ 1/(2vC) progressively shortens,
implying a correspondingly smaller phase frms. A classical 13C
field of amplitude insensitive to B should lead, therefore, to a
gradually smaller correlation signal in contrast with our results
(Fig. 2a). To shed light on the underlying processes, we use a first-
neighbour disjoint cluster model18 to numerically calculate the
quantum evolution of a central NV interacting with a
surrounding 13C bath (Supplementary Information, section on
Supplementary Methods). In qualitative agreement with Fig. 2, we
identify low- and high-field regimes separated by a critical field of
about 10mT. We find, however, that the calculated transition is
more gradual and that, in contrast with the high-field plateau of
Fig. 2a, the predicted NV response progressively decays after
reaching a maximum at about 20mT (faded red line in Fig. 2a).
These findings point to other mechanisms at work not properly
modelled in our description of the system dynamics. One
possibility that warrants further examination is the gradual
dynamic polarization of the 13C bath, a hypothesis consistent
with recent work reporting the observation of large 13C
magnetization in the vicinity of 50mT (ref. 19).

A related question of conceptual importance is whether the
observed correlation signal arises from random coherences in the
bath, or is rather initiated by the NV itself during the first
interrogation period. Only the first scenario—where the bath
evolves virtually unperturbed by the NV—is consistent with the
semiclassical description above, whereas the second alternative
involves some degree of entanglement. Our simulations suggest
that both contributions are part of the observed signal, although,
in principle, one can separate between one or the other, provided
the 13C ensemble in the NV vicinity can be polarized and
manipulated. Future double-resonance experiments, where
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multiple nuclear spins are controllably initialized into pre-defined
pure, superposition or entangled states will be key to exposing the
true classicality of the high-field dynamics.

High-resolution 13C spectroscopy. Notwithstanding the exact
mechanisms influencing the low- and high-field regimes, a more
practical facet of interest is the ability to spectroscopically probe
the 13C ensemble in the NV vicinity. The upper row in Fig. 4
shows the Fourier transform of the correlation signal corre-
sponding to three different NVs. Besides the peak associated to
the bath of distant 13C spins (v/vc¼ 1), the spectra of NV1 and
NV3 bring to light other, closer carbons with various hyperfine
couplings. Some of these couplings are strong enough to shift the
corresponding resonances beyond the available frequency band-
width, thus leading to folded peaks at deceivingly low frequencies
(marked in Fig. 4a with an asterisk).

Similar spectra can be obtained from Fourier-transforming the
corresponding Hahn-echo signals of each NV (ref. 20), but the
relative amplitudes are not necessarily the same. This effect
replicates that found in the three-pulse echo–envelope–
modulation protocol20 and reflects the less-than-optimum
impact of hyperfine-shifted carbons at a time t¼ 1/(2vC)
chosen to fit the timing of nuclear spins with near-Larmor
resonance frequencies. An interesting example is NV1, whose
electron paramagnetic resonance spectrum reveals a strongly
coupled carbon with hyperfine constant of order 600 kHz,
substantially higher than the 13C Zeeman interaction in the
applied 11mT field (Supplementary Information, section on
Supplementary Methods). From the amplitudes of the

corresponding resonances in the echo and correlation spectra,
we surmise that this carbon spin has a relatively minor role on the
dynamics of NV1 under the correlation protocol. The latter is
consistent with the observation that both NV1 and NV2 share the
same critical field Bc even though NV2 does not host any strongly
coupled nuclear spin (see Fig. 4c).

In spite of the differing 13C environments from one colour
centre to another, the time tCorr during which correlations persist
is found to be consistently longer than the typical NV transverse
relaxation time, of order 350ms. The implication is that the
ultimate spectral resolution—and, consequently, our ability to
discriminate between different 13C spins in the bath—can be
dramatically improved over that possible through the Hahn-echo
sequence. For example, in the particular case of NV2, we find
tCorrB5ms (Fig. 1a) comparable to the NV T1, of order 6ms.
Observing carbon evolution over such time intervals is sufficient
to resolve hyperfine couplings with a 200Hz difference, a two-
order of magnitude improvement over the resolution attained in
prior studies11.

Figure 4 introduces a strategy that potentially bypasses the
memory loss resulting from NV spin–lattice relaxation. In this
case, we articulate the protocol of Fig. 1a with a transfer scheme
designed to swap the states between the NV centre and the host
nitrogen nuclear spin immediately after (before) the first (second)
interrogation period (Supplementary Information, section on
Supplementary Methods). During ~t, information is stored in the
nitrogen nuclear spin (previously polarized to the state mI¼ 1)
and 13C evolution takes place with the NV deterministically
initialized to mS¼ 1 or mS¼ 0 (mid and lower traces in Fig. 4d).
In comparison with the spectrum without state transfer (upper
trace in Fig. 4d), we find an overall reduction of the signal
amplitude, which we attribute to the non-ideal fidelity—of order
80% (Supplementary Information, section on Supplementary
Methods)—of our state transfer protocol. More importantly, we
find a noticeable change in the relative amplitudes of the
hyperfine-shifted resonances, resulting from the varying influence
of the NV on the bath during ~t. For example, when mS¼ 0, the
13C spectrum reduces to a single peak centred at the bare carbon
Larmor frequency, consistent with the notion that the
NV-induced magnetic field gradient on the bath is switched off
throughout the evolution time.

Discussion
Our ability to spectroscopically probe the mesoscale spin system in
contact with the NV is a facet of the present technique with
important practical implications. Unlike the Hahn-echo or the
Carr–Purcell–Meiboom–Gill (CPMG) protocols, the spectral
resolution is defined by the NV T1 time, typically longer than
T2. Further, the interrogation time could be extended by storing
the phase information in a spin register with a suitably longer
spin–lattice lifetime. For example, in the present case the ultimate
spectral resolution would scale inversely with the 14N spin–lattice
relaxation time (typically much longer than the NV T1). Naturally,
the latter rests on the ability to repump the NV to a desired state
throughout the full evolution interval so as to prevent NV-induced
relaxation of the probed spin bath. This condition is difficult to
meet for the 40mT field chosen for the experiment of Fig. 4,
because laser illumination—responsible for the 14N initialization
early in the sequence—has a detrimental effect on the nuclear spin
memory when applied during ~t (ref. 21). One can, however,
circumvent this problem via modified schemes where initialization
of the 14N spin is carried out by other means at a sufficiently
different magnetic field.

The higher spectral resolution and the richer information
content of the present technique paves the way to discriminating
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between otherwise undistinguishable 13C spins, which would be
important to enhance the processing capacity of a given spin node
in a QIP device. This is particularly important when we note that
several tens of carbon spins (assuming 1% abundance) lie within
the 3–4 nm diameter sphere where hyperfine interactions with the
NV centre are sufficiently strong. The ability to identify and
selectively address isolated nuclear qubits within this ensemble
will positively impact the number of long-lived registers that can
be exploited to store quantum information. Conversely, control-
ling clusters of interacting carbon spins will be relevant to
generating the entanglement required for multiple QIP opera-
tions or for implementing quantum error-correction protocols. In
particular, one can think of improving the fidelity of single-shot
readout schemes by concatenating the 14N spin with other
selectively addressable carbons. Alternatively, it would be possible
to implement multidimensional correlation sequences designed to
expose the connectivities between neighbouring 13C spins in ways
resembling those used in high-field NMR spectroscopy22.

We call specific attention to applications in the area of high-
resolution sensing to probe spin systems other than the 13C bath.
For example, in a recent paper23 we have shown that one can use
shallow-implanted NVs to probe proton spins within an organic
polymeric film deposited on the diamond crystal surface. For this
application, the present protocol would lead to a proton ‘free-
induction-decay’ without the need for nuclear spin initialization.
The central advantage is versatility: By using radiofrequency
pulses resonant with the nuclear Larmor frequency during ~t, one
could implement homonuclear decoupling sequences to remove
dipolar interactions without eliminating the chemical shift

information. Alternatively, one can envision double-resonance
schemes to implement multidimensional sequences that can shed
light on the molecular structure of the organic system at low
magnetic field and with nanometer spatial discrimination.

From a more fundamental point of view, the NV–13C complex
provides an excellent model system to investigate the intricacies
of many body spin dynamics at the mesoscale. Our results show
that a relatively small variation of the ratio between the Zeeman
and hyperfine energies leads to a dramatic change in the system
spin dynamics. Although our results thus far can be qualitatively
understood in terms of a field-induced quantum-to-classical
transition17, several features warrant further examination. These
include the exact role of strongly coupled nuclei throughout the
transition, the system dynamics responsible for the constant
signal amplitude at high magnetic field and the impact of the
initial 13C state on the outcome of the pulse protocol. The critical
magnetic field where the regime change takes place can be tuned
by adjusting the timing within our correlation scheme, suggesting
that a sufficiently short Hahn-echo interrogation can be regarded
as a form of weak quantum measurement of the bath state24. The
latter could possibly be exploited to implement feedback
measurement schemes to dynamically protect bath spins from
decoherence25,26.

Methods
Optically detected magnetic resonance. Our sample is a [111]-oriented, type IIa
natural diamond. We use a small permanent magnet in the vicinity of the crystal to
induce an external magnetic field B0 aligned with the NV axis. We alter the
magnetic field amplitude by displacing the magnet via precision translation stages.
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We probe NV centres using a purpose-built confocal microscope and a solid-state
green laser (532 nm). An ultrafast acousto-optic modulator allows us to create short
light pulses with time resolution up to 5 ns. Light is focused by a high numerical
aperture objective (1.35) on the sample, and its fluorescence is collected (after a
dichroic mirror and a notch filter) into a 4-mm fibre (whose core serves as the
microscope collection pinhole). Photon counting is carried out with the aid of a
fibre-coupled avalanche photo detector; the use of a fibre splitter and a second
avalanche photo detector in the Hanbury–Brown–Twiss geometry allows us to
conduct time-correlated photon counting experiments (necessary to identify the
single NV centres studied herein). We can obtain scan images of the sample using a
two-axis, computer-controlled galvo. We manipulate the NV centre spin via
resonant microwave pulses (at B1–4GHz), which we create through a wave
generator and an amplifier, a fast (B3 ns) r.f. switch and a pulse generator. The
field of a 20-mm diameter copper wire positioned over the diamond crystal surface
allows us to attain a p/2 rotation of nearby NV centre spins inB15 ns. Throughout
these experiments, we selectively address the mS¼ 0-mS¼ 1 transition in the NV
ground triplet. At the magnetic fields we work (B41 mT), all other transitions are
strongly detuned and the NV can be effectively considered a two-level system. In
the experiments of Fig. 4, we use an arbitrary wavefunction generator and radio-
frequency amplifier to manipulate the nitrogen nuclear spin.
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