15 research outputs found

    Papel de HIF1 y PHD3 en la microglía de la enfermedad de Alzheimer

    Get PDF
    Tesis doctoral.-- Universidad de Sevilla, Facultad de Medicina, Departamento de Fisiología Médica y Biofísica

    Hypoxia compromises the mitochondrial metabolism of Alzheimer’s disease microglia via HIF1

    Get PDF
    Genetic Alzheimer’s disease (AD) risk factors associate with reduced defensive amyloid β plaque-associated microglia (AβAM), but the contribution of modifiable AD risk factors to microglial dysfunction is unknown. In AD mouse models, we observe concomitant activation of the hypoxia-inducible factor 1 (HIF1) pathway and transcription of mitochondrial-related genes in AβAM, and elongation of mitochondria, a cellular response to maintain aerobic respiration under low nutrient and oxygen conditions. Overactivation of HIF1 induces microglial quiescence in cellulo, with lower mitochondrial respiration and proliferation. In vivo, overstabilization of HIF1, either genetically or by exposure to systemic hypoxia, reduces AβAM clustering and proliferation and increases Aβ neuropathology. In the human AD hippocampus, upregulation of HIF1α and HIF1 target genes correlates with reduced Aβ plaque microglial coverage and an increase of Aβ plaque-associated neuropathology. Thus, hypoxia (a modifiable AD risk factor) hijacks microglial mitochondrial metabolism and converges with genetic susceptibility to cause AD microglial dysfunction.Instituto de Salud Carlos III CD09/0007, PI18/01556, PI18/01557Ministerio de Educación, Cultura y Deporte FPU14/02115, AP2010‐1598, FPU16/02050, FPU15/02898, BES-2010-033886Ministerio de Economia, Industria y Competitividad SAF2012‐33816, SAF2015‐64111‐R, SAF2017-90794-REDT, PIE13/0004, BFU2016-76872-R, BES-2011-047721Junta de Andalucía P12‐CTS‐2138, P12‐CTS‐2232, UMA18-FEDERJA-211, US‐126273

    Hypoxia compromises the mitochondrial metabolism of Alzheimer’s disease microglia via HIF1

    Get PDF
    Genetic Alzheimer’s disease (AD) risk factors associate with reduced defensive amyloid β plaque-associated microglia (AβAM), but the contribution of modifiable AD risk factors to microglial dysfunction is unknown. In AD mouse models, we observe con- comitant activation of the hypoxia-inducible factor 1 (HIF1) pathway and transcription of mitochondrial-related genes in AβAM, and elongation of mitochondria, a cellular response to maintain aerobic respiration under low nutrient and oxygen conditions. Overactivation of HIF1 induces microglial quiescence in cellulo, with lower mitochondrial respiration and proliferation. In vivo, overstabilization of HIF1, either genetically or by exposure to systemic hypoxia, reduces AβAM clustering and proliferation and increases Aβ neuropathology. In the human AD hippocampus, upregulation of HIF1α and HIF1 target genes correlates with reduced Aβ plaque microglial coverage and an increase of Aβ plaque-associated neuropathology. Thus, hypoxia (a modifiable AD risk factor) hijacks microglial mitochondrial metabolism and converges with genetic susceptibility to cause AD microglial dysfunction

    Non-productive angiogenesis disassembles Aß plaque-associated blood vessels

    Get PDF
    The human Alzheimer’s disease (AD) brain accumulates angiogenic markers but paradoxically, the cerebral microvasculature is reduced around Aß plaques. Here we demonstrate that angiogenesis is started near Aß plaques in both AD mouse models and human AD samples. However, endothelial cells express the molecular signature of non-productive angiogenesis (NPA) and accumulate, around Aß plaques, a tip cell marker and IB4 reactive vascular anomalies with reduced NOTCH activity. Notably, NPA induction by endothelial loss of presenilin, whose mutations cause familial AD and which activity has been shown to decrease with age, produced a similar vascular phenotype in the absence of Aß pathology. We also show that Aß plaque-associated NPA locally disassembles blood vessels, leaving behind vascular scars, and that microglial phagocytosis contributes to the local loss of endothelial cells. These results define the role of NPA and microglia in local blood vessel disassembly and highlight the vascular component of presenilin loss of function in AD

    Systemic and Local Hypoxia Synergize Through HIF1 to Compromise the Mitochondrial Metabolism of Alzheimer's Disease Microglia

    Get PDF
    Microglial cells are key contributors to Alzheimer’s disease (AD), constituting the first cellular line against Aß plaques. Local hypoxia and hypoperfusion, which are typically present in peripheral inflammatory foci, are also common in the AD brain. We describe here that Aß deposits are hypoxic and hypoperfused and that Aß plaque-associated microglia (AßAM) are characterized by the expression of hypoxia-inducible factor 1 (HIF1)-regulated genes. Notably, AßAM simultaneously upregulate the expression of genes involved in anaerobic glycolysis and oxidative mitochondrial metabolism, show elongated mitochondria surrounded by rough endoplasmic reticulum, and blunt the HIF1-mediated exclusion of pyruvate from the mitochondria through the pyruvate dehydrogenase kinase 1 (PDK1). Overstabilization of HIF1 –by genetic (von Hippel-Lindau deficient microglia) or systemic hypoxia (an AD risk factor)– induces PDK1 in microglia and reduces microglial clustering in AD mouse models. The human AD brain exhibits increased HIF1 activity and a hypoxic brain area shows reduced microglial clustering. The loss of the microglial barrier associates with augmented Aß neuropathology both in the chronic hypoxia AD mouse model and the human AD brain. Thus, the synergy between local and systemic AD risk factors converges with genetic susceptibility to cause microglial dysfunction.Peer reviewe

    Hypoxia compromises the mitochondrial metabolism of Alzheimer’s disease microglia via HIF1

    Get PDF
    Genetic Alzheimer’s disease (AD) risk factors associate with reduced defensive amyloid β plaque-associated microglia (AβAM), but the contribution of modifiable AD risk factors to microglial dysfunction is unknown. In AD mouse models, we observe concomitant activation of the hypoxia-inducible factor 1 (HIF1) pathway and transcription of mitochondrial-related genes in AβAM, and elongation of mitochondria, a cellular response to maintain aerobic respiration under low nutrient and oxygen conditions. Overactivation of HIF1 induces microglial quiescence in cellulo, with lower mitochondrial respiration and proliferation. In vivo, overstabilization of HIF1, either genetically or by exposure to systemic hypoxia, reduces AβAM clustering and proliferation and increases Aβ neuropathology. In the human AD hippocampus, upregulation of HIF1α and HIF1 target genes correlates with reduced Aβ plaque microglial coverage and an increase of Aβ plaque-associated neuropathology. Thus, hypoxia (a modifiable AD risk factor) hijacks microglial mitochondrial metabolism and converges with genetic susceptibility to cause AD microglial dysfunction.R.M.-D. was the recipient of a Sara Borrell fellowship from Instituto de Salud Carlos III (ISCIII) (CD09/0007). N.L.-U., C.O.-d.S.L., C.R.-M. and M.I.A.-V. were the recipients of FPU fellowships from Spanish Ministry of Education, Culture and Sport (FPU14/02115, AP2010‐1598, FPU16/02050 and FPU15/02898, respectively). A.H.-G. was the recipient of an FPI fellowship from the Spanish Ministry of Education, Culture and Sport (BES-2010-033886). This work was supported by grants from the Spanish MINEICO, ISCIII and FEDER (European Union) (SAF2012‐33816, SAF2015‐64111‐R, SAF2017-90794-REDT and PIE13/0004 to A.P.); by the Regional Government of Andalusia co-funded by CEC and FEDER funds (European Union) (‘Proyectos de Excelencia’; P12‐CTS‐2138 and P12‐CTS‐2232 to A.P.); by the ‘Ayuda de Biomedicina 2018’, Fundación Domingo Martínez (to A.P.) ; by the ISCIII of Spain, co-financed by FEDER funds (European Union) through grants PI18/01556 (to J.V.) and PI18/01557 (to A. Gutierrez); by Junta de Andalucía, co-financed by FEDER funds (grants UMA18-FEDERJA-211 (to A. Gutierrez) and US‐1262734 (to J.V.)); and by Spanish MINEICO (BFU2016-76872-R and BES-2011-047721 to E.B.).Peer reviewe

    Papel de HIFa en el control de la proliferación de la microglía

    No full text
    Peer Reviewe

    Relevance of BET Family Proteins in SARS-CoV-2 Infection

    No full text
    The recent pandemic we are experiencing caused by the coronavirus disease 2019 (COVID-19) has put the world's population on the rack, with more than 191 million cases and more than 4.1 million deaths confirmed to date. This disease is caused by a new type of coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A massive proteomic analysis has revealed that one of the structural proteins of the virus, the E protein, interacts with BRD2 and BRD4 proteins of the Bromodomain and Extra Terminal domain (BET) family of proteins. BETs are essential to cell cycle progression, inflammation and immune response and have also been strongly associated with infection by different types of viruses. The fundamental role BET proteins play in transcription makes them appropriate targets for the propagation strategies of some viruses. Recognition of histone acetylation by BET bromodomains is essential for transcription control. The development of drugs mimicking acetyl groups, and thereby able to displace BET proteins from chromatin, has boosted interest on BETs as attractive targets for therapeutic intervention. The success of these drugs against a variety of diseases in cellular and animal models has been recently enlarged with promising results from SARS-CoV-2 infection studies.Research at M.G.-D. lab is currently supported by grants PGC2018-094232-B-I00 from Ministry of Science, Innovation and Universities (MICIU), Spain, and CV20-93141 from regional government from Andalusia (both co-financed by the European Regional Development Fund).Ye

    Cancer-Associated Dysregulation of Sumo Regulators: Proteases and Ligases

    No full text
    SUMOylation is a post-translational modification that has emerged in recent decades as a mechanism involved in controlling diverse physiological processes and that is essential in vertebrates. The SUMO pathway is regulated by several enzymes, proteases and ligases being the main actors involved in the control of sumoylation of specific targets. Dysregulation of the expression, localization and function of these enzymes produces physiological changes that can lead to the appearance of different types of cancer, depending on the enzymes and target proteins involved. Among the most studied proteases and ligases, those of the SENP and PIAS families stand out, respectively. While the proteases involved in this pathway have specific SUMO activity, the ligases may have additional functions unrelated to sumoylation, which makes it more difficult to study their SUMO-associated role in cancer process. In this review we update the knowledge and advances in relation to the impact of dysregulation of SUMO proteases and ligases in cancer initiation and progression.This research was funded by MICIN/AEI/10.13039/501100011033, Spain/ERDF “A way to make Europe”, European Union, grant number PGC2018-094232-B-I00
    corecore