5,955 research outputs found

    Investigation to enhance sustainable improvements in high speed rail transport

    Get PDF
    Transport systems are essential for the life of modern societies and economies. A sustainable transport system can shape a sustainable development pattern and socio-economic attributes of urban centres and regions. The use of private cars and trucks is increasing in most countries, creating more congestion, accidents, pollution and energy consumption. Many governments desire to achieve growth in public transport to overcome these adverse trends. A massive shift toward an environmentally sound type of transport is crucial and railways are deemed to be one of the most sustainable modes. All over the world the railway industry is involved in a renewal to reform and up-date rail, prompted largely by environmental concerns. The trend is to develop speed-competitive systems to expand transportation capacity. The focus of the current research, which is at its commencing stages, is to investigate the opportunities to apply an alternative approach to railway operations to overcome the difficulty of high speed transport in servicing larger amounts of demand, while achieving minimum point to point travel time, in a viable and integrated environment for both passenger and freight services. The expected outcome of the research project is to present a framework that may be used to identify and evaluate the most cost-effective transport solution to service not only major cities, but also regional centres along an interregional rail corridor, thus providing greater benefits on local economies and to build a spine for future development

    The direction of time: from the global arrow to the local arrow

    Full text link
    In this paper we discuss the traditional approaches to the problem of the arrow of time. On the basis of this discussion we adopt a global and non-entropic approach, according to which the arrow of time has a global origin and is an intrinsic, geometrical feature of space-time. Finally, we show how the global arrow is translated into local terms as a local time-asymmetric flux of energ

    Photoelectrochemical properties of melanin

    Get PDF
    Melanin is to the animal kingdom like chlorophyll to the vegetal kingdom(1). Melanin collects energy from lower-energy radiation sources, kicks electrons into excited states, initiating a process that would end up producing chemical energy, similar to the way in which photosynthesis supplies energy to plants. However, the precise roles of melanin during this process are unknown. Here we show that the increase in the electron-transfer properties of melanin is independent of the energy of the incident photons. We found in controlled in vivo assays that melanin has the remarkable capability of converting lower-energy radiation towards a more useful form of energy. Furthermore, we found that melanin can break up water molecules and giving up energy suggesting an additional behavior mode for melanin. Our results demonstrate how members of the melanin family are likely to function as transducers, oxidizing water, pushing apart water molecules, as well as recruiting back ions into molecules that are subsequently polarized again. Melanin drives the photon energy of lower-energy radiation sources by quenching electrons and initiating an ionic event independently of their relative energy contention. We anticipate our assay to be a starting point for more sophisticated photoelectrochemical applications. For example, the individual and combined action of multiple photovoltaic applications could be tested, including conducting polymers, for example poly-(phenylenevinylene) (PPV) derivatives or C60 particles. Furthermore, melanin's energy conversion ability is a major target of solar energy conversion development, and an organic-semiconductor way for photoelectrochemical applications will be relevant for such developments.</sup></sup&#x3e

    One-step recursive method for solving systems of differential equations

    Get PDF
    AbstractIn this work an iteration one-step method to integrate systems of nonlinear ordinary differential equations with initial values is presente

    CEST and MEST: Tools for the simulation of radio frequency electric discharges in waveguides

    Full text link
    This is the author’s version of a work that was accepted for publication in Simulation Modelling Practice and Theory. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Simulation Modelling Practice and Theory, 16, 9, (2008) http://dx.doi.org/10.1016/j.simpat.2008.08.002In this paper we present two software tools for the simulation of electron multiplication processes in radio frequency (RF) waveguides. The electric discharges are caused by the multiplication of a small initial number of electrons. These are accelerated by the RF field and produce new electrons either by collisions with the walls of the waveguide (ripping new electrons from them), or by ionization of the neutral atoms of a gas inside the device. MEST allows simulating the Multipactor effect, a discharge produced in vacuum and generated by the collision of the electrons with the walls. CEST simulates the discharge when in addition a neutral gas is present in the waveguide, at pressures lower than ground levels (often denominated Corona discharge). The main characteristic of both tools is that they implement individual-based, microscopic models, where every electron is individually represented and tracked. In the case of MEST, the simulation is discrete-event, as the trajectory of each electron can be computed analytically. In CEST we use a hybrid simulation approach. The trajectory of each electron is governed by the Langevin stochastic differential equations that take into account a deterministic RF electric force and the random interaction with the neutral atom background. In addition, wall and ionizing collisions are modelled as discrete events. The tools allow performing batches of simulations with different wall coating materials and gases, and have produced results in good agreement with experimental and theoretical data. The different output forms generated at run-time have proven to be very useful in order to analyze the different discharge processes. The tools are valuable for the selection of the most promising coating materials for the construction of the waveguide, as well as for the identification of safe operating parameters.Work sponsored by the ESA, TRP activity program 17025/03/NL/EC: Surface Treatment and Coating
    • …
    corecore