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Abstract

In this work an iteration one-step method to integrate systems of nonlinear ordinary differential equations with initial values is
presented
© 2007 Elsevier B.V. All rights reserved.

Keywords: Ordinary differential equations; Taylor polynomial; Numerical methods

1. Introduction

Differential equations with strong or weak nonlinearities have been of great interest because they play an important
role in dynamics, physics, etc. In this work we consider the following nonlinear equation:

y′(x) = Ay(x) + F(y(x)), (1)

where ′ = d/dx, y ∈ Rm, and A is a constant real matrix of dimension m × m, F ∈ Rm is a polynomial function and
x ∈ (−∞, ∞).

A large bibliography exists on numerical methods to solve nonlinear systems of differential equations
[1–3,7,9,11,12,14,15], in particular, there are interesting works with nonlinear oscillations [6,8,10]. In this paper a
one-step iteration method is presented for initial value problems, based on the solution of the non-homogeneous linear
systems [4]. In the work (see [10]) F is approximated by a Taylor’s polynomial. In our case, we first approximate y

by Taylor’s polynomial. We demonstrate that this strategy is more efficient than the continuous analytic continuation
(CAC) [5]. Moreover the uniform convergence to the exact solution is demonstrated and the local error is determined.

The paper is organized in the following sections: In Section 2 the recursive method is developed, based on the solution
of the linear autonomous systems. In Section 3 the convergence of the method is studied. In Section 4 the local error
is determined. In Section 5 the implementation of the recusive equations is presented for a simple case. In Section 6
numerical results are presented. In Section 7 the conclusions are drawn.
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2. Recursive solution

In this section, a one-step method of integration is developed to solve Eq. (1), with initial conditions, based on the
theory of the non-homogeneous linear systems. Let us divide the integration interval [x0, x0 + H ] in n equal parts by
the points x0, x1, . . . , xn, where the longitude of each element is xi+1 − xi = hn = H/n, i = 0, . . . , n − 1.

Let us consider the initial condition y(x0) = y0 for the integration in the interval x0 �x�x1. The integral curve is
defined for the solution of the linear problem:

y′
n(x) = Ayn(x) + F(Tq(yn(x), x0, x)),

y(x0) = y0, x0 �x�x1, (2)

where the number of intervals n parameterizes the solution and Tq(y(x), x0, x) is the Taylor’s polynomial of degree q

around x0. By the explicit integration of the Eq. (2) we find yn(x) in the intervals x0 �x�x1. Starting from the initial
value yn(x1) we obtain the solution in the second interval, and so forth. Then, for each interval we have the approximate
explicit solution of Eq. (1).

In this way we determine yn(x) in x0 �x�x0 + H . In Section 3, we will demonstrate that the sequence yn(x)

uniformly converges to the solution of Eq. (1), when n → ∞.

3. Convergence of the method

Let us consider the equation

y′(x) = Ay(x) + F(y(x)),

y(x0) = y0, (3)

where y�Rm, A is a constant real matrix of dimension m × m, F �Rm is polynomial and x0 �x�x0 + H . We will
demonstrate the sequence yn(x) uniformly converges to the solution y(x) satisfying y(x0) = y0.

The existence and uniqueness of the solution of Eq. (3) is given by the existence and uniqueness theorem of Ref.
[4]. The theorem also determines the interval [x0, x0 + H ], H �∞ where y(x) is analytic.

We will demonstrate that the succession of the function yn(x) that begins in the point (x0, y0) with step hn = H/n

uniformly converges in the segment x0 �x�x0 + H .
Based on Section 2 the solution yn(x) satisfies

y′
n(x) = Ayn(x) + F(Tq(yn(x), xk, x)), xk �x�xk+1, k = 0, . . . , n − 1. (4)

that we can rewrite as

y′
n(x) = Ayn(x) + F(yn(x)) + gn(x), (5)

where

gn(x) = F(Tq(yn(x), xk, x)) − F(yn(x)),

since F is polynomical and yn is analytical in [x0, x0 + H ]. We can bound gn by

‖gn(x)‖ < εn, k = 0, 1, . . . ,∞, (6)

if n > Nεn , where εn → 0 when n → ∞, gn(x)=%F ·(Tq−yn)+O(Tq−yn)
2, Tq−yn=�y(xk)/�x(x−xk)+O(x−xk)

2,
since ‖x − xk‖�hn and hn → 0 when n → ∞.

Integrating the Eq. (5) between x0 and x with ‖x − x0‖�H , and using the initial condition y(x0) = y0, we formally
obtain (see details in Section 5)

yn(x) = y0 +
∫ x

x0

Ayn(x
′) dx′ +

∫ x

x0

F(yn(x
′)) dx′ +

∫ x

x0

gn(x
′) dx′, (7)

where n is positive integer. Now, considering an integer m�0, we have

yn+m(x) = y0 +
∫ x

x0

Ayn+m(x′) dx′ +
∫ x

x0

F(yn+m(x′)) dx′ +
∫ x

x0

gn+m(x′) dx′. (8)
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Subtracting Eq. (8) from Eq. (7) and taking the norm, we obtain

‖yn+m(x) − yn(x)‖�
∫ x

x0

‖A‖‖yn+m(x′) − yn(x
′)‖ dx′ +

∫ x

x0

‖F(yn+m(x′)) − F(yn(x
′))‖dx′

+
∫ x

x0

‖gn+m(x′)‖ dx′ +
∫ x

x0

‖gn(x
′)‖ dx′,

in x0 �x�x0 +H , since F is polynomial ‖F(yn+m(x))−F(yn(x))‖�‖%F(yn)‖‖yn+m(x)−yn(x)‖�K‖yn+m(x)−
yn(x)‖ then, the maximum norm is bounded by

max ‖yn+m(x) − yn(x)‖�‖A‖H max ‖yn+m(x) − yn(x)‖ + HK max ‖yn+m(x) − yn(x)‖
+ max

∫ x

x0

‖gn+m(x′)‖ dx′ + max
∫ x

x0

‖gn(x
′)‖ dx′,

using the Ineq. (6)

max ‖yn+m(x) − yn(x)‖�H‖A‖ max ‖yn+m(x) − yn(x)‖
+ HK max ‖yn+m(x) − yn(x)‖ + (�n + �n+m)H ,

because ‖x − x0‖� H , then

max ‖yn+m(x) − yn(x)‖�(�n + �n+m)
H

1 − H‖A‖ − KH
,

using the Ineq. (6), we have that �n → 0, �n +m → 0 when n → ∞. In this way, we have demonstrated that the
succession of functions yn(x) uniformly converges in x0 �x�x0 + H .

Now, we will demonstrate that the limit of the succession is the solution y(x) of the Eq. (1). Let

z(x) = lim
n→∞ yn(x),

using successive constructions, we obtain

z(x) = y0 + lim
n→∞

∫ x

x0

Ayn(x
′) dx′ + lim

n→∞

∫ x

x0

F(yn(x
′)) dx′ + lim

n→∞

∫ x

x0

gn(x
′) dx′.

Since yn(x) is uniformly continuous

lim
n→∞

∫ x

x0

Ayn(x
′) dx′ =

∫ x

x0

A lim
n→∞ yn(x

′) dx′ =
∫ x

x0

Az(x′) dx′,

since F is polynomial

lim
n→∞

∫ x

x0

F(yn(x
′)) dx′ =

∫ x

x0

F
(

lim
n→∞ yn(x

′)
)

dx′ =
∫ x

x0

F(z(x′)) dx′,

and by construction of gn and using Eq. (6) limn→∞
∫ x

x0
gn(x

′) dx′ = 0, then

z(x) = y0 +
∫ x

x0

Az(x′) dx′ +
∫ x

x0

F(z(x′)) dx′.

Therefore z(x) is the solution of Eq. (1), then y(x) = z(x). The uniqueness of the limit is given by the existence and
uniqueness theorem (see [4]).
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4. Local error

In this section we study the splitting between the exact and numeric solutions in each step. The cause of this difference
is the finite number of segments in which the interval x0 �x�x0 +H is divided. For simplicity we consider the system

y′(x) = z(x) − F(y(x), z(x)),

z′(x) = −y(x) − G(y(x), z(x)), (9)

where F and G are polynomial. Given the initial values yk, zk at xk , integrating Eq. (9) we obtain for y(x):

y(x) = yk + (zk − F(yk, zk))(x − xk) − 1

2!
(

yk + G(yk, zk) + d

dx
F(y(xk), z(xk))

)
(x − xk)

2

+ 1

3!
(

−zk + F(yk, zk) − d

dx
G(y(xk), z(xk)) − d2

dx2 F(y(xk), z(xk))

)
(x − xk)

3 + · · · .

(10)

Since we are interested in determining the local error of the method developed in Section 2, we analyze y(x). Using
Eqs. (2), (9) can be rewritten as

y′(x) = z(x) − F(Tq(y, xk, x), Tp(z, xk, x)),

z′(x) = −y(x) − G(Tq(y, xk, x), Tp(z, xk, x)), (11)

where xk < x < xk + hn, Tq(y, xk, x) and Tp(z, xk, x) are the Taylor’s polynomials of order q and p of y and z around
xk . To simplify the notation, we suppress the subindex n in the variable y and z. Integrating Eq. (11) with the initial
values yk, zk in xk , we obtain

y(x) = yk + (zk − F(Tq(y, xk, xk), Tp(z, xk, xk)))(x − xk)

− 1

2! (yk + G(Tq(y, xk, xk), Tp(z, xk, xk))) + d

dx
F(Tq(y, xk, xk), Tp(z, xk, xk))(x − xk)

2

+ 1

3! (−zk + F(Tq(y, xk, xk), Tp(z, xk, xk))) − d

dx
G(Tq(y, xk, xk), Tp(z, xk, xk))

− d2

dx2 F(Tq(y, xk, xk), Tp(z, xk, xk))(x − xk)
3 + · · · . (12)

Since Tq , Tp are Taylor’s polynomial of order q and p, we obtain

dm

dxm
Tq(y, xk, x = xk) = dm

dxm
y(xk), m = 0, 1, . . . , q,

dm

dxm
Tp(z, xk, x = xk) = dm

dxm
z(xk), m = 0, 1, . . . , p.

Using these equalities

d

dx
F(Tq(y, xk, xk), Tp(z, xk, xk)) = �

�y
F(y(xk), z(xk))

d

dx
Tq(y, xk, xk)

+ �

�z
F (y(xk), z(xk))

d

dx
Tp(z, xk, xk)

= d

dx
F(y(xk), z(xk)),

in the same way, dmF(y(xk), z(xk))/dxm = dmF(Tq(y, xk, xk), Tp(z, xk, xk))/dxm and dm G(y(xk), z(xk))/dxm =
dmG(Tq(y, xk, xk), Tp(z, xk, xk))/dxm where m = 0, 1, . . . , min(p, q).

Comparing Eqs. (10) and (12) if we approximate y up to the order q and z up to order q − 1, then the solution of
Eq. (11) coincides, up to the order q + 1, with the solution of Eq. (9).

Summarizing, the solutions yn(x), zn(x) are estimates of y(x), z(x) since we approximate F(y(x), z(x)) by
F(Tq(yn(x), xk, x), Tp(zn(x), xk, x)) and G(y(x), z(x)) by G(Tq(yn(x), xk, x), Tp(zn(x), xk, x)) in xk �x�xk +hn.
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Therefore, in each iteration, the local error is ek = ‖y(xk) − yn(xk)‖ = O(h
q+2
n ), k = 0, . . . , n − 1. Therefore, at same

order, our method is more efficient than CAC.
This result is easily generalizable to Eq. (1) and it is also another way to prove the convergence since the continuous

analytic continuation method is uniformly convergent.

5. Applications

In order to present the detailed implementation of the method, we have chosen a particular equation

y′(x) = z(x) − P(y(x), z(x)),

z′(x) = −y(x), (13)

where P is a polynomial function. Then using Eqs. (13) the general expression of the Taylor polynomial is obtained:
y(x) � Tr(y(x), xk, x) and z(x) � Tq(z(x), xk, x). According to Section 2, in the interval xk �x�xk+1, P(y, z) is
approximated by

P(Tr(y(x), xk, x), Tq(z(x), xk, x)) =
m∑

j=0

c
(k)
j (x − xk)

j , (14)

using this equation, we determine the coefficients c
(k)
j = c

(k)
j (yn(xk), zn(xk)). Naturally, c

(k)
j and m depend on each

election of P . Substituting the Eq. (14) in the Eq. (13) and integrating it, we obtain

yn(x) = cos(x − xk)fk(x − xk) + sin(x − xk)gk(x − xk),

zn(x) = − sin(x − xk)fk(x − xk) + cos(x − xk)gk(x − xk), (15)

for xk �x�xk+1, where

fk(x − xk) = yn(xk) + 1

2

n∑
j=0

ij+1c
(k)
j (�(1 + j, −i(x − xk)) − (−1)j �(1 + j, i(x − xk)))

+
n∑

j=0

j ! sin

(
j�

2

)
c
(k)
j ,

gk(x − xk) = zn(xk) + 1

2

n∑
j=0

ij c
(k)
j (�(1 + j, −i(x − xk)) + (−1)j �(1 + j, i(x − xk)))

−
n∑

j=0

j ! cos

(
j�

2

)
c
(k)
j , (16)

where i2 = −1 and the incomplete gamma function satisfies �(�, z) = ∫ ∞
z

t�−1 exp −t dt .
Using Eqs. (15) and (16) we evaluate yn(x), zn(x), in xk+1, and we obtain

yn(xk+1) = cos(hn)fk(hn) + sin(hn)gk(hn),

zn(xk+1) = − sin(hn)fk(hn) + cos(hn)gk(hn), (17)

where the terms of the r.h.s. depend on xk , yn(xk) and zn(xk). This allows to determine our iteration procedure that
formally is written as

yn(xk+1) = F(xk, yn(xk), zn(xk)),

zn(xk+1) = G(xk, yn(xk), zn(xk)),

where y0(x0) = y(x0), z0(x0) = z(x0). Naturally, in each segment, the coefficients c
(k)
j , fk , gk they are re-evaluated

using Eqs. (14) and (16). In the following section, these results are implemented to two well-known cases of nonlinear
oscillations.
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6. Numerical examples

We implement the results of the previous section to two well-known cases. We compare our results with the methods
continuous analytic continuation (CAC) [5] and the command NDSolve of the software Mathematica [13] (the default
method, Automatic, automatically switches between backward differentiation formulas and Adams multistep methods,
depending on stiffness). The considered cases correspond to systems that possess strong nonlinear oscillations [6,8,10].

The first example corresponds to

y′(x) = z(x) − (1 − y(x)2 − z(x)2),

z′(x) = −y(x), (18)

with the initial values y(0) = 1 and z(0) = 0, which has the periodic explicit solution y(x) = cos x and z(x) = sin(x).
This curved solution has the invariant c(x) = y2 + z2 = 1. We integrate Eq. (18) by using of the three methods: the
proposed method developing y and z until the third order, Taylor polynomials (CAC) developing y and z until the third
order and by the command NDSolve. We determine the discreet distance d between the invariant c(x) = 1 and the
numeric result ck ,

d(c(xk), ck) =
√√√√1

n

n∑
k=1

(1 − ck)
2,

where n is the number of iterations. The value of d gives us a measure of the precision of the numeric result. Using
an integration step h = 0.01 and different periods of the solution, we obtained the following results for the distance d

Periods 1 10 100
Proposed 5 × 10−10 4 × 10−10 4 × 10−10

Taylor 3 × 10−7 2 × 10−5 2 × 10−5

NDSolve 6 × 10−8 6 × 10−8 6 × 10−8

Based on the numeric results we see that: (1) the methods maintain invariant ck with good precision, (2) the precision
obtained with the proposed method is substantially better than in the two other cases.

As a second example we consider the van der Pol equation that has one limit cycle

y′(x) = z(x) − �( 1
3y(x)3 − y(x)),

z′(x) = −y(x). (19)

Since we do not have an explicit solution, we consider as reference the obtained one by NDSolve with initial
integration step h = 0.001. Developing y until the third order and using the recursive Eqs. (17), we compare the
obtained results with the CAC method of third order. In the same way as in the previous example, we use the distance
d to evaluate the precision of the solutions. Now, we use the distance

d(y(xk), yk) =
√√√√1

n

n∑
k=1

(y(xk) − yk)
2,

where y(xk) is the reference solution obtained with NDSolve, yx is the discreet solution obtained with the proposed
method or CAC and n is the number of iterations. To obtain the limit cycle, we choose � = 1, x0 = 1.85 and y0 = 0.
The integration step h = 0.1 for the left table and h = 0.01 for the right table. Integrating in different periods of the
solution, we compare d for the proposed method and CAC.

Periods 1 10 100
Proposed 10−5 10−4 10−3

Taylor 3 × 10−4 10−3 10−2
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Periods 1 10 100
Proposed 10−9 10−8 10−7

Taylor 3 × 10−7 10−6 10−5

Although the distance d is a measure of the global error, we obtain better results with our method. With regard to the
local and global error, it is interesting to remark that the result is consistent with those of Section 3.

7. Conclusions

In this paper we have developed a fixed-one-step iteration integration method, for non linear systems of ordinary
differential equations with given initial value. It is based on the analytic solution of the non-homogeneous linear equation.
We demonstrate the uniform convergence and we determine the local error and at the same order, our method is more
efficient than CAC. Even better results are obtained with respect to other classic methods. The numeric implementation
is relatively simple and shows that the method is stable even for a great number of steps.
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