451 research outputs found

    Fluid dipping technology of chimpanzees in Comoé National Park, Ivory Coast

    No full text
    Over a 6 month period during the dry season, from the end of October 2014 to the beginning of May 2015, we studied tool use behavior of previously unstudied and non-habituated savanna chimpanzees (Pan troglodytes verus) living in the Comoé National Park, Ivory Coast (CI). We analyzed all the stick tools and leaf-sponges found that the chimpanzees used to forage for ants, termites, honey, and water. We found a particular behavior to be widespread across different chimpanzee communities in the park, namely, dipping for water from tree holes using sticks with especially long brush-tip modifications, using camera traps, we recorded adults, juveniles, and infants of three communities displaying this behavior. We compared water dipping and honey dipping tools used by Comoé chimpanzees and found significant differences in the total length, diameter, and brush length of the different types of fluid-dipping tools used. We found that water dipping tools had consistently longer and thicker brush-tips than honey dipping tools. Although this behavior was observed only during the late dry season, the chimpanzees always had alternative water sources available, like pools and rivers, in which they drank without the use of a tool. It remains unclear whether the use of a tool increases efficient access to water. This is the first time that water dipping behavior with sticks has been found as a widespread and well-established behavior across different age and sex classes and communities, suggesting the possibility of cultural transmission. It is crucial that we conserve this population of chimpanzees, not only because they may represent the second largest population in the country, but also because of their unique behavioral repertoire

    Search for the companions of Galactic SNe Ia

    Full text link
    The central regions of the remnants of Galactic SNe Ia have been examined for the presence of companion stars of the exploded supernovae. We present the results of this survey for the historical SN 1572 and SN 1006. The spectra of the stars are modeled to obtain Teff, log g and the metallicity. Radial velocities are obtained with an accuracy of 5--10 km s1^{-1}. Implications for the nature of the companion star in SNeIa follow.Comment: 8 pages, 2 Postscript figures. Appeared in "From Twilight to Highlight: the Physics of Supernovae", ed. W. Hillebrandt & B. Leibundgut (Springer), pp. 140-14

    Optical and near infrared observations of SN 1998bu

    Full text link
    Infrared and optical spectra of SN 1998bu at an age of one year after explosion are presented. The data show evidence for the radioactive decay of 56Co to 56Fe, long assumed to be the powering source for the supernova light curve past maximum light. The spectra provide direct evidence for at least 0.4 solar masses of iron being present in the ejecta of the supernova. The fits to the data also show that the widths of the emission lines increase with time. Photometric measurements in the H-band show that the supernova is not fading during the observation period. This is consistent with theoretical expectations.Comment: accepted A&A, 7 pages, 9 figure

    Tycho Brahe's supernova: light from centuries past

    Full text link
    The light curve of SN 1572 is described in the terms used nowadays to characterize SNeIa. By assembling the records of the observations done in 1572--74 and evaluating their uncertainties, it is possible to recover the light curve and the color evolution of this supernova. It is found that, within the SNe Ia family, the event should have been a SNIa with a normal rate of decline, its stretch factor being {\it s} \sim 0.9. Visual light curve near maximum, late--time decline and the color evolution sustain this conclusion. After correcting for extinction, the luminosity of this supernova is found to be MV_{V} == --19.58 --5 log (D/3.5 kpc) ±\pm 0.42.Comment: 28 pages, 3 figures, 3 tables. submitted to ApJ (Main Journal

    Type Ia Supernova Scenarios and the Hubble Sequence

    Get PDF
    The dependence of the Type Ia supernova (SN Ia) rate on galaxy type is examined for three currently proposed scenarios: merging of a Chandrasekhar--mass CO white dwarf (WD) with a CO WD companion, explosion of a sub--Chandrasekhar mass CO WD induced by accretion of material from a He star companion, and explosion of a sub--Chandrasekhar CO WD in a symbiotic system. The variation of the SNe Ia rate and explosion characteristics with time is derived, and its correlation with parent population age and galaxy redshift is discussed. Among current scenarios, CO + He star systems should be absent from E galaxies. Explosion of CO WDs in symbiotic systems could account for the SNe Ia rate in these galaxies. The same might be true for the CO + CO WD scenario, depending on the value of the common envelope parameter. A testable prediction of the sub--Chandrasekhar WD model is that the average brightness and kinetic energy of the SN Ia events should increase with redshift for a given Hubble type. Also for this scenario, going along the Hubble sequence from E to Sc galaxies SNe Ia events should be brighter on average and should show larger mean velocities of the ejecta. The observational correlations strongly suggest that the characteristics of the SNe Ia explosion are linked to parent population age. The scenario in which WDs with masses below the Chandrasekhar mass explode appears the most promising one to explain the observed variation of the SN Ia rate with galaxy type together with the luminosity--expansion velocity trend.Comment: 16 pages uuencoded compressed Postscript, 2 figures included. ApJ Letters, in pres

    Identification of the companion stars of Type Ia supernovae

    Get PDF
    The nature of the binary systems giving rise to Type Ia supernovae (SNeIa) remains an unsolved problem. In this {\it Letter} we calculate, from the statistics of initial conditions (masses and binary separations), the mass, luminosity, and velocity distributions of the possible binary companions (main-sequence star, subgiant, red giant) following the explosion of the white dwarf which gives rise to the SNeIa. Those companions could be detected from either their proper or their radial motions, by means of high-precision astrometric and radial-velocity measurements in young, nearby supernova remnants. Peculiar velocities typically ranging from 100 to 450 km s1^{-1} should be expected, which places proper-motion measurements within reach of HST instruments and makes radial-velocity ones feasible with 2.5-4m class telescopes from the ground. Detections would solve the long-standing problem of which kind of binaries do produce SNeIa and clear up the way to accurate physical modeling of the explosions.Comment: 17 pages, incl. 2 figures. Submittet to ApJ (Letters

    Supernova search at intermediate z. I. Spectroscopic analysis

    Full text link
    We study 8 supernovae discovered as part of the International Time Programme (ITP) project ``Omega and Lambda from Supernovae and the Physics of Supernova Explosions'' at the European Northern Observatory (ENO). The goal of the project is to increase the sample of intermediate redshift (0.1<z<0.4) SNe Ia for testing properties of SNe Ia along z and for enlarging the sample in the Hubble diagram up to large z.Comment: 2 pages, 2 figures, 1 table, to appear in ``1604-2004: Supernovae as Cosmological Lighthouses'', (extended text upon request

    Evaluation in a Cytokine Storm Model in Vivo of the Safety and Efficacy of Intravenous Administration of PRS CK STORM (Standardized Conditioned Medium Obtained by Coculture of Monocytes and Mesenchymal Stromal Cells)

    Get PDF
    Our research group has been developing a series of biological drugs produced by cocul-ture techniques with M2-polarized macrophages with different primary tissue cells and/or mesen-chymal stromal cells (MSC), generally from fat, to produce anti-inflammatory and anti-fibrotic ef-fects, avoiding the overexpression of pro-inflammatory cytokines by the innate immune system at a given time. One of these products is the drug PRS CK STORM, a medium conditioned by allogenic M2-polarized macrophages, from coculture, with those macrophages M2 with MSC from fat, whose composition, in vitro safety, and efficacy we studied. In the present work, we publish the results obtained in terms of safety (pharmacodynamics and pharmacokinetics) and efficacy of the intravenous application of this biological drug in a murine model of cytokine storm associated with severe infectious processes, including those associated with COVID-19. The results demonstrate the safety and high efficacy of PRS CK STORM as an intravenous drug to prevent and treat the cytokine storm associated with infectious processes, including COVID-19
    corecore