375 research outputs found
Results of isolated posterolateral corner reconstruction
BACKGROUND: Isolated posterolateral corner (PLC) tears are relatively rare events. Various surgical techniques to treat posterolateral knee instability have been described; because surgical results are linked to cruciate reconstructions it has been difficult to date to define whether one surgical procedure has better prognosis than another. The goal of this study is to determine the clinical outcome of PLC reconstruction following fibular-based technique.
MATERIALS AND METHODS: We retrospectively evaluated a case series of patients who received isolated PLC reconstruction between March 2005 and January 2007. Ten patients were surgically treated for isolated injuries and were available for follow-up; average patient age was 27.4 years (range 16-47 years). All patients were treated following the fibular-based technique: double femoral tunnel was performed in six patients, while in the remaining four patients, the reconstruction of the PLC was performed with a single femoral tunnel. Six patients had semitendinosus allograft and four had semitendinosus autograft. All patients had the same evaluation and the same rehabilitation protocol.
RESULTS: Mean follow-up was 27.5 months (range 18-40 months). Mean range of motion (ROM) was 143.5 degrees for flexion (range 135-150 degrees) and 0.5 degrees for extension (range 0-3 degrees). Three patients showed 1+ on varus stress test, while on Dial test another three patients showed 10 degrees reduction of external rotation compared with contralateral knee. The average Lysholm score was 94 points (range 83-100), and the mean International Knee Documentation Committee (IKDC) subjective result was 88.48 (range 74-96.5). Based on Lysholm score, the results were excellent in eight knees and good in two knees. On IKDC evaluation, two patients were grade A and eight were grade B. No significant difference in clinical results was observed between single and double femoral tunnel.
CONCLUSION: Fibular-based technique showed good results in terms of clinical outcome, restoring varus and rotation stability of knees in treatment of chronic isolated PLC injury
Restoring tibiofemoral alignment during ACL reconstruction results in better knee biomechanics
"Published online: 24 October 2017"PURPOSE:
Anterior cruciate ligament (ACL) reconstruction (ACLR) aims to restore normal knee joint function, stability and biomechanics and in the long term avoid joint degeneration. The purpose of this study is to present the anatomic single bundle (SB) ACLR that emphasizes intraoperative correction of tibiofemoral subluxation that occurs after ACL injury. It was hypothesized that this technique leads to optimal outcomes and better restoration of pathological tibiofemoral joint movement that results from ACL deficiency (ACLD).
METHODS:
Thirteen men with unilateral ACLD were prospectively evaluated before and at a mean follow-up of 14.9 (SD = 1.8) months after anatomic SB ACLR with bone patellar tendon bone autograft. The anatomic ACLR replicated the native ACL attachment site anatomy and graft orientation. Emphasis was placed on intraoperative correction of tibiofemoral subluxation by reducing anterior tibial translation (ATT) and internal tibial rotation. Function was measured with IKDC, Lysholm and the Tegner activity scale, ATT was measured with the KT-1000 arthrometer and tibial rotation (TR) kinematics were measured with 3Dmotion analysis during a high-demand pivoting task.
RESULTS:
The results showed significantly higher TR of the ACL-deficient knee when compared to the intact knee prior to surgery (12.2° ± 3.7° and 10.7° ± 2.6° respectively, P = 0.014). Postoperatively, the ACLR knee showed significantly lower TR as compared to the ACL-deficient knee (9.6°±3.1°, P = 0.001) but no difference as compared to the control knee (n.s.). All functional scores were significantly improved and ATT was restored within normal values (P < 0.001).
CONCLUSIONS:
Intraoperative correction of tibiofemoral subluxation that results after ACL injury is an important step during anatomic SB ACLR. The intraoperative correction of tibiofemoral subluxation along with the replication of native ACL anatomy results in restoration of rotational kinematics of ACLD patients to normal levels that are comparable to the control knee. These results indicate that the reestablishment of tibiofemoral alignment during ACLR may be an important step that facilitates normal knee kinematics postoperatively.
LEVEL OF EVIDENCE:
Level II, prospective cohort study.The authors gratefully acknowledge the funding support from the Hellenic Association of Orthopaedic Surgery and
Traumatology (HAOST-EEXOT)info:eu-repo/semantics/publishedVersio
A Dutch guideline for the treatment of scoliosis in neuromuscular disorders
<p>Abstract</p> <p>Background</p> <p>Children with neuromuscular disorders with a progressive muscle weakness such as Duchenne Muscular Dystrophy and Spinal Muscular Atrophy frequently develop a progressive scoliosis. A severe scoliosis compromises respiratory function and makes sitting more difficult. Spinal surgery is considered the primary treatment option for correcting severe scoliosis in neuromuscular disorders. Surgery in this population requires a multidisciplinary approach, careful planning, dedicated surgical procedures, and specialized after care.</p> <p>Methods</p> <p>The guideline is based on scientific evidence and expert opinions. A multidisciplinary working group representing experts from all relevant specialties performed the research. A literature search was conducted to collect scientific evidence in answer to specific questions posed by the working group. Literature was classified according to the level of evidence.</p> <p>Results</p> <p>For most aspects of the treatment scientific evidence is scarce and only low level cohort studies were found. Nevertheless, a high degree of consensus was reached about the management of patients with scoliosis in neuromuscular disorders. This was translated into a set of recommendations, which are now officially accepted as a general guideline in the Netherlands.</p> <p>Conclusion</p> <p>In order to optimize the treatment for scoliosis in neuromuscular disorders a Dutch guideline has been composed. This evidence-based, multidisciplinary guideline addresses conservative treatment, the preoperative, perioperative, and postoperative care of scoliosis in neuromuscular disorders.</p
Origin and insertion of the medial patellofemoral ligament: a systematic review of anatomy.
PURPOSE: The medial patellofemoral ligament (MPFL) is the major medial soft-tissue stabiliser of the patella, originating from the medial femoral condyle and inserting onto the medial patella. The exact position reported in the literature varies. Understanding the true anatomical origin and insertion of the MPFL is critical to successful reconstruction. The purpose of this systematic review was to determine these locations. METHODS: A systematic search of published (AMED, CINAHL, MEDLINE, EMBASE, PubMed and Cochrane Library) and unpublished literature databases was conducted from their inception to the 3 February 2016. All papers investigating the anatomy of the MPFL were eligible. Methodological quality was assessed using a modified CASP tool. A narrative analysis approach was adopted to synthesise the findings. RESULTS: After screening and review of 2045 papers, a total of 67 studies investigating the relevant anatomy were included. From this, the origin appears to be from an area rather than (as previously reported) a single point on the medial femoral condyle. The weighted average length was 56 mm with an 'hourglass' shape, fanning out at both ligament ends. CONCLUSION: The MPFL is an hourglass-shaped structure running from a triangular space between the adductor tubercle, medial femoral epicondyle and gastrocnemius tubercle and inserts onto the superomedial aspect of the patella. Awareness of anatomy is critical for assessment, anatomical repair and successful surgical patellar stabilisation. LEVEL OF EVIDENCE: Systematic review of anatomical dissections and imaging studies, Level IV
Assessment of correlation between knee notch width index and the three-dimensional notch volume
This study was done to determine whether there is a correlation between the notch volume and the notch width index (NWI) as measured on the three most frequently used radiographic views: the Holmblad 45°, Holmblad 70°, and Rosenberg view. The notch volume of 20 cadaveric knees was measured using Computed Tomography (CT). The Holmblad 45°, Holmblad 70°, and Rosenberg notch view radiographs were digitally re-created from the CT scans for each specimen, and the NWI was measured by two observers. The Pearson correlation coefficient between the NWI and notch volume was calculated, as well as between the three views. An independent t test was performed to determine the difference in NWI and notch volume between male and female specimens. The reliability for each view was also determined. There was no correlation between the NWI as measured on the Holmblad 45°, Holmblad 70°, or Rosenberg view and the notch volume. All three radiographic views proved reliable, but showed only a moderate correlation with each other. Men had larger notch volumes than women, but there was no difference in NWI. A knee with a small intercondylar notch is often considered an increased risk for ACL rupture. The NWI is a frequently used two-dimensional method to determine notch size. However, in the present study, this index was not positively correlated with the overall volume of the notch. Based on the results of the current study, the authors would advice to use caution when using notch view radiographs in a clinical setting to predict risk of ACL rupture
Medial patellofemoral ligament injury patterns and associated pathology in lateral patella dislocation: an MRI study
BACKGROUND: Lateral Patella dislocations are common injuries seen in the active and young adult populations. Our study focus was to evaluate medial patellofemoral ligament (MPFL) injury patterns and associated knee pathology using Magnetic Resonance Imaging studies.
METHODS: MRI studies taken at one imaging site between January, 2007 to January, 2008 with the final diagnosis of patella dislocation were screened for this study. Of the 324 cases that were found, 195 patients with lateral patellar dislocation traumatic enough to cause bone bruises on the lateral femoral trochlea and the medial facet of the patella were selected for this study. The MRI images were reviewed by three independent observers for location and type of MPFL injury, osteochondral defects, loose bodies, MCL and meniscus tears. The data was analyzed as a single cohort and by gender.
RESULTS: This study consisted of 127 males and 68 females; mean age of 23 yrs. Tear of the MPFL at the patellar attachment occurred in 93/195 knees (47%), at the femoral attachment in 50/195 knees (26%), and at both the femoral and patella attachment sites in 26/195 knees (13%). Attenuation of the MPFL without rupture occurred in 26/195 knees (13%). Associated findings included loose bodies in 23/195 (13%), meniscus tears 41/195 (21%), patella avulsion/fracture in 14/195 (7%), medial collateral ligament sprains/tears in 37/195 (19%) and osteochondral lesions in 96/195 knees (49%). Statistical analysis showed females had significantly more associated meniscus tears than the males (27% vs. 17%, p = 0.04). Although not statistically significant, osteochondral lesions were seen more in male patients with acute patella dislocation (52% vs. 42%, p = 0.08).
CONCLUSION: Patients who present with lateral patella dislocation with the classic bone bruise pattern seen on MRI will likely rupture the MPFL at the patellar side. Females are more likely to have an associated meniscal tear than males; however, more males have underlying osteochondral lesions. Given the high percentage of associated pathology, we recommend a MRI of the knee in all patients who present with acute patella dislocation
Isometry of medial collateral ligament reconstruction
The purpose of this study was to determine the femoral and tibial fixation sites that would result in the most isometric MCL reconstruction technique. Seven cadaveric knees were used in this study. A navigation system was utilized to determine graft isometry continuously from 0º to 90º. Five points on the medial side of the femur and four on the tibia were tested. A graft positioned in the center of the MCL femoral attachment (FC) and attached in the center of the superficial MCL attachment on the tibia led to the best isometry (2.7 ± 1.1 mm). Movement of the origin superiorly only 4 mm (FS) led to graft excursion of greater than 10 mm (P < 0.01). MCL reconstruction performed with the origin of the MCL within the femoral footprint and the insertion in tibial footprint of the superficial MCL results in the least graft excursion when the knee is cycled between 0º and 90º. Although the MCL often heals without surgical intervention, surgical reconstruction is occasionally in Grade III MCL and combined ligamentous injuries to the knee. This study demonstrates the optimal position of the MCL reconstruction to reproduce the kinematics of the native knee
The peripheral soft tissues should not be ignored in the finite element models of the human knee joint
- …
