72 research outputs found

    Classical chromodynamics and heavy ion collisions

    Get PDF
    This paper is a slightly modified version of the introductory part of a doctoral dissertation also containing the articles hep-ph/0303076, hep-ph/0409328 and hep-ph/0409058. The paper focuses on the calculation of particle production in a relativistic heavy ion collision using the McLerran-Venugopalan model. The main part of the paper summarizes the background of these numerical calculations. First we relate this calculation of the initial stage af a heavy ion collision to our understanding of the whole collision process. Then we discuss the saturation physics of the small x wavefunction of a hadron or a nucleus. The classical field model of Kovner, McLerran and Weigert is then introduced before moving to discuss the numerical algorithms used to compute gluon and quark pair production in this model. Finally we shortly review the results on gluon and quark-antiquark production obtained in the three articles mentioned above.Comment: 55 pages, 11 figures, introductory part of a PhD thesi

    Initial conditions in AA and pA collisions

    Get PDF
    A full understanding of the spacetime evolution of the QCD matter created in a heavy ion collision requires understanding the properties of the initial stages. In the weak coupling picture these are dominated by classical gluon fields, whose properties can also be studied via the scattering of dilute probes off a high energy hadron or nucleus. A particular challenge is understanding small systems, where LHC data is also showing signs of collective behavior. We discuss some recent results of on the initial matter production and thermalization in heavy ion collisions, in particular in the gluon saturation framework.Peer reviewe

    High energy factorization in nucleus-nucleus collisions

    Get PDF
    We derive a high energy factorization theorem for inclusive gluon production in A+A collisions. Our factorized formula resums i) all order leading logarithms (g^2 \ln(1/x_{1,2}))^n of the incoming partons momentum fractions, and ii) all contributions (g \rho_{1,2})^n that are enhanced when the color charge densities in the two nuclei are of order of the inverse coupling-- \rho_{1,2}\sim g^{-1}. The resummed inclusive gluon spectrum can be expressed as a convolution of gauge invariant distributions W[\rho_{1,2}] from each of the nuclei with the leading order gluon number operator. These distributions are shown to satisfy the JIMWLK equation describing the evolution of nuclear wavefunctions with rapidity. As a by-product, we demonstrate that the JIMWLK Hamiltonian can be derived entirely in terms of retarded light cone Green's functions without any ambiguities in their pole prescriptions. We comment on the implications of our results for understanding the Glasma produced at early times in A+A collisions at collider energies.Comment: 55 pages, 14 postscript figure

    Probing spectral properties of the QGP with real-time lattice simulations

    Full text link
    We present a new method to obtain spectral properties of a non-Abelian gauge theory in the region where occupation numbers are high. The method to measure the (single-particle) spectral function is based on linear response theory and classical-statistical lattice simulations. Although we apply it to a system far from equilibrium in a self-similar regime, the extracted spectral function can be understood within the hard thermal loop (HTL) formalism and can thus be connected to thermal equilibrium at high temperatures. This allows us to obtain quantities like the lifetime of quasiparticles that are beyond the leading order and difficult to compute within HTL. The approach has the potential to measure transport coefficients, to study the earliest stages of heavy-ion collisions in a controlled way and it can be employed beyond the range of validity of HTL.Comment: 5 pages, 2 figures, Proceedings of the International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions - Hard Probes 201

    Evolution of initial stage fluctuations in the glasma

    Get PDF
    We perform a calculation of the one- and two-point correlation functions of energy density and axial charge deposited in the glasma in the initial stage of a heavy ion collision at (mite proper time. We do this by describing the initial stage of heavy ion collisions in terms of freely evolving classical fields whose dynamics obey the linearized Yang-Mills equations. Our approach allows us to systematically resum the contributions of high momentum modes that would make a power series expansion in proper time divergent. We evaluate the field correlators in the McLerran-Venugopalan model using the glasma graph approximation, but our approach for the time dependence can be applied to a general four-point function of the initial color fields. Our results provide analytical insight into the preequilibrium phase of heavy ion collisions without requiring a numerical solution to the Yang-Mills equations.Peer reviewe

    Higher-order corrections to exclusive heavy vector meson production

    Full text link
    We present results for higher-order corrections to exclusive J/ψ\mathrm{J}/\psi production. This includes the first relativistic correction of order v2v^2 in quark velocity, and next-to-leading order corrections in αs\alpha_s for longitudinally polarized production. The relativistic corrections are found to be important for a good description of the HERA data, especially at small values of the photon virtuality. The next-to-leading order results for longitudinal production are evaluated numerically. We also demonstrate how the vector meson production provides complementary information to the structure functions for extracting the initial condition for the small-xx evolution of the dipole-proton scattering amplitude.Comment: Submission to SciPost, 6 pages, 2 figure

    Effects of partial thermalization on HBT interferometry

    Full text link
    Hydrodynamical models have generally failed to describe interferometry radii measured at RHIC. In order to investigate this ``HBT puzzle'', we carry out a systematic study of HBT radii in ultrarelativistic heavy-ion collisions within a two-dimensional transport model. We compute the transverse radii RoR_o and RsR_s as functions of ptp_t for various values of the Knudsen number, which measures the degree of thermalization in the system. For realistic values of the Knudsen number estimated from v2v_2 data, we obtain Ro/Rs≃1.2R_o/R_s \simeq 1.2, much closer to data than standard hydrodynamical results. Femtoscopic observables vary little with the degree of thermalization. Azimuthal oscillations of the radii in non central collisions do not provide a good probe of thermalization.Comment: Proceedings for Quark Matter 2009, Knoxville, TN US
    • 

    corecore