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We derive a high energy factorization theorem for inclusive gluon production in Aþ A collisions. Our

factorized formula resums (i) all-order leading logarithms ðg2 lnð1=x1;2ÞÞn of the incoming parton

momentum fractions, and (ii) all contributions ðg�1;2Þn that are enhanced when the color charge densities

in the two nuclei are of order of the inverse coupling—�1;2 � g�1. The resummed inclusive gluon

spectrum can be expressed as a convolution of gauge invariant distributions W½�1;2� from each of the

nuclei with the leading order gluon number operator. These distributions are shown to satisfy the

JIMWLK equation describing the evolution of nuclear wave functions with rapidity. As a by-product,

we demonstrate that the JIMWLK Hamiltonian can be derived entirely in terms of retarded light-cone

Green’s functions without any ambiguities in their pole prescriptions. We comment on the implications of

our results for understanding the Glasma produced at early times in Aþ A collisions at collider energies.
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I. INTRODUCTION

Collinear factorization theorems [1] that isolate long
distance nonperturbative parton distribution functions
from perturbatively calculable short distance matrix ele-
ments are central to the predictive power and success of
QCD. These theorems can be applied to compute inclusive
cross sections of the form Aþ B! IðMÞ þ X, where IðMÞ
is a set of heavy particles or jets with invariant massM, and
X corresponds to the sum over all possible states (including
soft and collinear hadrons) that can accompany the object
IðMÞ. This cross section, for center-of-mass energy

ffiffiffi
s
p

, can
be expressed as [2–6]

�AB ¼
X
ab

Z
dxadxbfa=Aðxa; �2Þfb=Bðxb; �2Þ

� �̂ab

�
M2

xaxbs
;
M

�
;�sð�Þ

��
1þO

�
1

Mn

��
: (1)

In this equation, faðbÞ=AðBÞðxaðbÞ; �2Þ are the nonperturba-

tive ‘‘leading twist’’ parton distribution functions which
give the distribution of a parton aðbÞ in the hadron AðBÞ, as
a function of the longitudinal momentum fraction xaðbÞ
evolved up to the factorization scale �2, while the hard
scattering matrix element �̂ab can be computed systemati-
cally in a perturbative expansion in powers of�s ¼ g2=4�,
where g is the QCD coupling constant. Higher twist con-
tributions to this formula are suppressed by powers n of the
hard scale M. This factorization formula is valid in the
Bjorken limit when M2 � s� �2

QCD (where �QCD �
200 MeV is the intrinsic QCD scale).

Our interest here is, instead, in a different regime of high
energy scattering where, for fixed invariant mass M�
�QCD, one takes

ffiffiffi
s
p ! 1 and thus xa;b ! 0. We shall

call this the Regge-Gribov limit of QCD. An important
insight is that in this limit the field strengths squared can

become very large [Oð 1�s
Þ] corresponding to the saturation

of gluon densities [7,8]. The onset of saturation is charac-
terized by a saturation scale QsðxÞ, which opens a kine-
matic window M2 �Q2

s � �2
QCD accessible at very high

energies. The physics of the Regge-Gribov regime is quite
different from that of the Bjorken limit discussed previ-
ously. The typical momenta of partons are �Qs � �QCD,

and higher twist contributions are not suppressed. These
considerations are especially relevant for the scattering of
large nuclei because the large transverse density of partons
in the nuclear wave functions (proportional to the nuclear

radius �A1=3) provides a natural enhancement of the satu-

ration scale, Q2
sðx; AÞ / A1=3. Our goal is to derive a for-

mula similar to Eq. (1) for inclusive gluon production in
the Regge-Gribov limit.
The dynamics of large parton phase-space densities in

the Regge-Gribov limit can be described in the color glass
condensate (CGC) effective field theory where small x
partons in hadrons and nuclei are described by a classical
field, while the large x partons act as color sources for the
classical field [9–11]. The lack of dependence of physical
observables on the (arbitrary) separation between large x
color sources and small x dynamical fields is exploited to
derive a renormalization group (RG) equation, known as
the JIMWLK equation [12–19]. This equation is a func-
tional RG equation describing the change in the statistical
distribution of color sources WY½�� with rapidity Yð¼
lnð1=xÞÞ. It can be expressed as

@WY½��
@Y

¼HWY½��; (2)

where H is the JIMWLK Hamiltonian.1 For a physical

1The explicit form of this Hamiltonian will be given later in
the text.
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observable defined by an average over all the source con-
figurations,

hOiY �
Z
½D��WY½��O½��; (3)

one obtains

@hOiY
@Y

¼ hHOiY: (4)

We have used here Eq. (2) and integrated by parts (using
the Hermiticity of H ). The structure of H is such that
hHOiY is an object distinct from hOiY , so that one obtains,
in principle, an infinite hierarchy of evolution equations for
operator expectation values hOiY [20]. In the large Nc and
large A mean-field limit, this hierarchy simplifies greatly.
When O is the ‘‘dipole’’ operator, corresponding to the
forward scattering amplitude in deep inelastic scattering,
the resulting closed evolution equation is known as the
Balitsky-Kovchegov (BK) equation [21,22].

In Refs. [23–25], we developed a formalism to compute
observables related to multiparticle production in field
theories with strong time-dependent sources. This formal-
ism is naturally applicable to the CGC description of high
energy scattering,2 albeit, for simplicity, we considered
only a scalar �3 field theory. (The corresponding QCD
framework was briefly considered in Ref. [26].) In these
papers, the formalism for multiparticle production was
developed for a fixed distribution of sources, with the
assumption that the final results could be averaged over,
as in Eq. (3), with unspecified distributions of sources
WY1
½�1� and WY2

½�2� (one for each of the projectiles).

However, we did not discuss, in these papers, the validity
of such a factorization formula.

In the formalism of Refs. [23–25], one can formally
arrange the perturbative expansion of an observable like
the single inclusive gluon spectrum as

O ½�1; �2� ¼ 1

g2
½c0 þ c1g

2 þ c2g
4 þ � � ��; (5)

where each term corresponds to a different loop order.
Each of the coefficients cn is itself an infinite series of
terms involving arbitrary orders in ðg�1;2Þp. We call ‘‘lead-

ing order’’ the contribution that comes from the first coef-
ficient c0:

O LO½�1; �2� � c0
g2

: (6)

In the case of the single gluon spectrum, the first term
c0=g

2 has been studied extensively. In [24] we developed
tools to calculate the next term c1. Following this termi-
nology, we denote

O NLO½�1; �2� � c1; ONNLO½�1; �2� � c2g
2; � � � :

(7)

However, this strict loop expansion ignores the fact that
large logarithms of the momentum fractions x1;2 can ap-

pear in the higher order coefficients c1;2;��� when
ffiffiffi
s
p

is very

large. The term cn can have up to n powers of such
logarithms, and a more precise representation of these
coefficients is

cn ¼
Xn
i¼0

dniln
i

�
1

x1;2

�
: (8)

The ‘‘leading log’’ terms are defined as those terms that
have as many logarithms as their order in g2,

O LLog½�1; �2� � 1

g2
X1
n¼0

dnng
2nlnn

�
1

x1;2

�
: (9)

In this work, we will go significantly further than the
leading order result, and resum the complete series of
leading log terms. We will prove that, after averaging
over the sources �1;2, all the leading log corrections are

automatically resummed by the JIMWLK evolution of the
distribution of sources, and that the event averaged leading
log result is given by the factorized expression

hOiLLog ¼
Z
½D�1�½D�2�WYbeam�Y½�1�
�WYbeamþY½�2�OLO½�1; �2;Y�: (10)

In this formula, Y is the rapidity at which the gluon is
measured, and the subscripts Ybeam � Y indicate the
amount of rapidity evolution3 of the source distributions
of the two projectiles, starting in their respective fragmen-
tation regions. Note that we have added a rapidity argu-
ment Y to the factor OLO under the integral in order to
stress the fact that our factorization result is valid only for
observables that depend on a single rapidity. Our recurring
example in the present paper will be the single inclusive
gluon spectrum, and in a sequel to this paper [27] we
generalize this result to the inclusive multigluon spectrum
in the special case where all the measured gluons are in a
small range of rapidity. In the rest of this paper, the rapidity
argument in OLO will be implicit in order to keep the
notations as compact as possible.
The expressions WYbeam�Y½�1;2� in Eq. (10) are gauge

invariant functionals describing the source distributions
in each of the nuclei. In analogy to the parton distribution
functions faðbÞ=AðBÞðxaðbÞ; �2Þ we introduced previously,

they contain nonperturbative information on the distribu-
tion of sources at rapidities close to the beam rapidities.

2Although the color sources of each nucleus are independent
of the corresponding light-cone time, their sum constitutes a
time-dependent current.

3In terms of the center-of-mass energy
ffiffiffi
s
p

of the collision (for
a nucleon-nucleon pair) and the longitudinal momentum com-
ponents p� of the measured gluon, one has also—at leading
log—Ybeam � Y ¼ lnð ffiffiffi

s
p

=pþÞ and Ybeam þ Y ¼ lnð ffiffiffi
s
p

=p�Þ.
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Just as the latter evolve in �2 with the DGLAP [28–30]
evolution equations, the former, as suggested by Eq. (2),
obey the JIMWLK evolution equation in rapidity which
evolves them up to the rapidities Ybeam � Y and Ybeam þ Y
from the nuclei A1 and A2, respectively. As we will discuss
in detail, the leading order inclusive gluon spectrum, for
given sources �1;2, can be computed by solving the classi-

cal Yang-Mills equations with simple retarded boundary
conditions. Equation (10) indicates that the resummation
of the leading logarithms of the collision energy is equiva-
lent to averaging the leading result with evolved (from the
beam rapidity to the rapidity Y of the produced gluon)
weight functionals W.

In the Regge-Gribov limit, Eq. (10) is the analog of the
factorization formula Eq. (1) proved in the Bjorken limit.
While we will prove that Eq. (10) holds for leading loga-
rithmic contributions at all orders in perturbation theory,
we have not attempted to show that it is valid for sublead-
ing logarithms. There is currently intense activity in com-
puting subleading logarithmic contributions in the high
parton density limit [31–37], so an extension of our results
beyond leading logs is feasible in the future. There is
another aspect of Aþ A collisions that we have not dis-
cussed thus far. Our power counting does not account for
the so-called ‘‘secular divergences’’ [38–40]. These are
contributions that diverge at least as powers of the time
elapsed after the collision. Including these contributions
will not alter our factorization theorem; it does affect how
‘‘observables’’ defined at finite times after the nuclear
collisions are related to quantities measured in Aþ A
experiments. We will address this issue briefly. A fuller
treatment requires more work.

The paper is organized as follows. In Sec. II, we derive
an important formula for the next-to-leading order correc-
tions to the inclusive gluon spectrum. This formula will
play a crucial role later, in disentangling the initial state
effects from the rest of the collision process. In Sec. III, we
will derive the expressions stated in Eqs. (2)–(4) for
JIMWLK evolution of a single nucleus. Albeit the result
is well known, our derivation is quite different from those
existing in the literature [12–19,41–45]. We will obtain our
result entirely in terms of retarded light-cone (LC) Green’s
functions without any recourse to time-ordered propaga-
tors. We will show that there are no ambiguities in specify-
ing the pole prescriptions in this approach. More
importantly, our derivation allows us to straightforwardly
extend our treatment of the JIMWLK equation to the case
of the collision of two nuclei. This is discussed separately
in Sec. IV, where we show explicitly that nonfactorizable
terms are suppressed and our key result, stated in Eq. (10),
is obtained. In the following section, we will relate our
work to previous work in this direction and briefly explore
some of the connections between the different approaches.
In Sec. VI, we will discuss how one can relate our result for
the Glasma produced at early times in heavy ion collisions

[25,46] and its subsequent evolution into the quark gluon
plasma. We conclude with a brief summary and discussion
of open issues. There are three appendixes dealing with
properties of Green’s functions in light-cone gauge rele-
vant to the discussion in the main text of the paper.

II. NLO CORRECTIONS TO INCLUSIVE
OBSERVABLES

Before studying the logarithmic divergences that arise in
loop corrections to observables, let us derive a formula that
expresses the 1-loop corrections to inclusive observables in
terms of the action of a certain operator acting on the same
observable at leading order. As we shall see, this formula—
albeit quite formal—can be used to separate the physics of
the initial state from the collision itself.
We have in mind an operator made of elementary color

fields, which probes multigluon correlations. To be spe-
cific, for a given source distribution, we shall consider the
quantum expectation value

O ðx; yÞ � hAiðxÞAjðyÞi; (11)

in the limit where the time arguments of the two fields go to
þ1. We chose this particular operator because we wish to
study the single gluon spectrum—the first moment of the
multiplicity distribution—in the collision of two nuclei; it
is obtained by Fourier transforming this bilinear combina-
tion of fields. Note that the two fields are not time ordered.
The expectation value of such a product can be calculated
in the Schwinger-Keldysh formalism [47–49], by consid-
ering that AiðxÞ lies on the � branch of the contour and
AjðyÞ on theþ branch. (A representation of the Schwinger-
Keldysh contour is shown in Fig. 1.)
This section is organized as follows. We first recall the

expression of Eq. (11) at leading order in terms of retarded
solutions of the classical Yang-Mills equations. This result
is well known and has been derived in a number of differ-
ent ways. We will then discuss the next-to-leading order
(NLO) computation of this quantity in the CGC frame-
work. There are two sorts of NLO corrections; these are the
virtual corrections arising from 1-loop corrections to the
classical fields and the real corrections which are obtained
by computing the G�þ propagator of a small fluctuation in
light-cone gauge. We will show that ONLO can be ex-
pressed as a linear operator with real and virtual pieces
acting on OLO, plus an unimportant (as far as the resum-
mation of logs of 1=x1;2 is concerned) additional term.

C +

-

FIG. 1. The closed time path used in the Schwinger-Keldysh
formalism.
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A. Leading order result

We showed in [23] that, at leading order, O is the
product of two classical solutions of the Yang-Mills equa-
tions, with null retarded boundary conditions,4

O LOðx; yÞ ¼AiðxÞAjðyÞ; (12)

with

½D�;F ��� ¼ J�; lim
x0!�1

A�ðxÞ ¼ 0: (13)

Here, A denotes the classical field, and J� is the color
current corresponding to a fixed configuration of the color
sources. The current is comprised of one or two sources
depending on whether we consider only one nucleus or the
collision of two nuclei—this distinction is not important in
this section. It is important to note that this current, which
has support only on the light cone, must be covariantly
conserved,

½D�; J
�� ¼ 0: (14)

This means that, in general, there is a feedback of the gauge
field on the current itself, unless one chooses a gauge
condition such that the gauge field does not couple to the
nonzero components of the current on the light cone.

Although one can solve analytically the Yang-Mills
equations with these boundary conditions in the case of a
single nucleus [12,51], this is not possible in the case of
two nuclei, and one must resort to numerical methods to
obtain results in this case. Fortunately, as we shall see, the
discussion of factorization in the case of two nuclei does
not require that we know this solution analytically.

Because the solution of the Yang-Mills equations we
need is defined with retarded boundary conditions, its
value at the points x and y (where the observable is
measured) is fully determined if we know its value5 on
an initial surface �—which is locally spacelike6—located
below the points x and y, as illustrated in Fig. 2.

Therefore, we will write

O LOðx; yÞ � OLO½A�; (15)

which means that the observable is considered as a func-

tional of the value of the color field on the initial surface�.
Note that we use the same symbol for the color field and for
its initial value on �, although mathematically these ob-
jects depend on a different number of variables and are
therefore different functions.

B. Next-to-leading order corrections

A detailed discussion of the power counting for mo-
ments of the inclusive multiplicity distribution can be
found in Ref. [23]. The leading order contribution to
Oðx; yÞ involves only tree diagrams, which explains why
it can be obtained from classical solutions of the Yang-
Mills equations. As mentioned previously, this leading
order contribution is of order Oð��1s Þ but includes all
orders in g�. In the rest of this section, we shall study
the 1-loop corrections to this quantity, that are of order
Oð1Þ in the coupling and to all orders in g�.
The framework to compute these 1-loop corrections

(hereafter called ‘‘NLO’’) to quantities such as Eq. (11)
has been developed for a scalar theory in Ref. [24]. Much
of this analysis can be carried over to QCD. To avoid
complications such as ghost loops, we shall work in a
gauge such as the light-cone gauge Aþ ¼ 0. Following
the discussion for the scalar case, we obtain at NLO

O NLOðx; yÞ ¼AiðxÞ�jðyÞ þ �iðxÞAjðyÞ þGij
�þðx; yÞ:

(16)

In this equation, Gij
�þðx; yÞ is the �þ component of the

small fluctuation Schwinger-Keldysh propagator in the
presence of the classical background fieldAi and the field
�i is the 1-loop correction to the classical field. It is
obtained by solving the small fluctuation equation of mo-
tion,

�
hxg

�� � @�x @�x � @2UðAÞ
@A�ðxÞ@A�ðxÞ

�
��ðxÞ

¼ 1

2

@3UðAÞ
@A�ðxÞ@A�ðxÞ@A�ðxÞG

��
þþðx; xÞ; (17)

with null retarded boundary conditions:

FIG. 2 (color online). A locally spacelike surface � used to
define the initial value of the color field.

4The retarded nature of the boundary conditions is intimately
related to the inclusiveness of the observable under considera-
tion. For instance, if instead of the single inclusive gluon
spectrum, one wanted to calculate at leading order the probabil-
ity of producing a fixed number of gluons, one would have to
solve the classical Yang-Mills equations with boundary condi-
tions both at x0 ¼ �1 and at x0 ¼ þ1 (see [50]).

5Since the Yang-Mills equations contain second derivatives
with respect to time, one must also know the value of the first
time derivative of the field on this initial surface.

6This means that at every point u 2 �, the vector n� normal to
� at the point u (n�dx� ¼ 0 for any displacement dx� on �
around the point u) must be timelike. This condition prevents a
signal emitted at the point u 2 �, propagating at the speed of
light, from encountering the surface � again.
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lim
x0!�1

��ðxÞ ¼ 0: (18)

Here UðAÞ is the potential term in the Yang-Mills
Lagrangian,7 obtained by writing

L ¼ Lquad �UðAÞ; (19)

whereLquad is defined in Eq. (A2) of Appendix A.We refer

the reader to Appendix A for more details. The source term
in this small fluctuation equation includes the closed loop
formed by the Schwinger-Keldysh propagatorGþþðx; xÞ to
be defined shortly, the third derivative corresponds to the 3-
gluon vertex in the presence of a background field, and 1=2
is a symmetry factor.

Following [24], we can write the propagator Gij
�þðx; yÞ

in Eq. (16) as a bilinear combination of small fluctuations
of the gauge field whose initial conditions are plane waves,

G ij;bc
�þ ðx; yÞ ¼

X
	;a

Z d3k

ð2�Þ32Ek

aib�k	aðxÞajcþk	aðyÞ; (20)

where

�
hxg

�� � @�x @�x � @2UðAÞ
@A�ðxÞ@A�ðxÞ

�
a�k	a;�ðxÞ ¼ 0;

lim
x0!�1

a��k	aðxÞ ¼ 
�	 ðkÞTae�ik�x: (21)

The sum over 	 is over the two physical polarizations for
the initial plane wave, and the index a represents the initial
color carried by the small fluctuation field. In Eq. (20), our
notation is such that the lower color index (a) represents
the initial color of the fluctuation, while the upper color
index (b or c) refers to its color after it has evolved on top
of the classical background field.8 It is important to stress

that this decomposition of Gij
�þ is valid only if one uses

small fluctuations that are plane waves in the remote past.
Using other solutions of the small fluctuation equation of
motion (21) would lead to a propagator that obeys incorrect
boundary conditions.

The þþ propagator at equal points can be written in a
similar fashion as9

G ij;bc
þþ ðx; xÞ ¼

X
	;a

Z d3k

ð2�Þ32Ek

aib�k	aðxÞajcþk	aðxÞ: (23)

We note that, in a generic gauge, covariant current
conservation may require the incoming field fluctuation
to induce a color precession of the classical current J�.
This modification of the current will, in turn, induce an
additional contribution to the field fluctuation. Our strategy
[52–54] to avoid this complication will be to perform all
intermediate calculations in a gauge where this phenome-
non does not happen. For instance, on the line x� ¼ 0
where the color charges moving in the þz direction are
located, one should use a gauge in whichA� ¼ 0. Indeed,
because the color current only has a þ component, cova-
riant conservation is trivial in this gauge. A gauge rotation
of the final result is then performed to return to the light-
cone gauge of interest. All effects due to current conser-
vation are then taken care of by this final gauge
transformation.

C. Rearrangement of the NLO corrections—I

In this subsection, we will express the small fluctuation

propagator Gij
�þðx; yÞ as the action of a differential opera-

tor on the classical fields AiðxÞ and AjðyÞ. This operator
contains functional derivatives with respect to the initial
value of the color field on �. In the following subsection,
we will repeat the exercise for the 1-loop correction to the
classical field ��ðxÞ and write it in terms of a similar
operator acting on the classical field A�ðxÞ. These iden-
tities, besides providing a transparent derivation of the
JIMWLK equation for a single nucleus, will be especially
powerful in our treatment of nucleus-nucleus collisions.
Let us begin from the Green’s formula for the classical

field A�,

A �ðxÞ ¼
Z
�þ

d4yD
��
0;R
ðx; yÞ @UðAÞ

@A�ðyÞ þB�
0 ½A�ðxÞ;

(24)

where D��
0;R
ðx; yÞ is the free retarded propagator (discussed

in Appendix A in the case of the light-cone gauge) and
B�

0 ½A�ðxÞ is the boundary term that contains the initial

value of the classical field on �. (Boundary terms for the
classical and small fluctuation fields in light-cone gauge
are discussed in detail in Appendix B.) �þ denotes the
region of space-time above the surface�. Now, consider an
operator T (to be defined explicitly later) that acts on the
initial value of the fields on the surface �, and assume that
this operator is linear, which implies

T
@UðAÞ
@A�ðyÞ ¼

@2UðAÞ
@A�ðyÞ@A�ðyÞT A�ðyÞ: (25)

Now applying this operatorT to both sides of Eq. (24), we
get

T A�ðxÞ ¼
Z
�þ

d4yD
��
0;R
ðx; yÞ @2UðAÞ

@A�ðyÞ@A�ðyÞ
� T A�ðyÞ þ T B�

0 ½A�ðxÞ: (26)

By comparing this equation with the Green’s formula for a
small fluctuation a� (see Appendix B),

7Unless one chooses a nonlinear gauge condition, UðAÞ is
made of the usual 3-gluon and 4-gluon couplings.

8For future reference, note that quantities with only the lower
color index are matrices in the adjoint representation of SUðNÞ
defined by

a��k	aðxÞ � a�b
�k	aðxÞTb: (22)

9When the two endpoints are separated by a timelike interval,
there can be an additional term contributing to this propagator—
see [24] for more general formulas.
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a�ðxÞ ¼
Z
�þ

d4yD
��
0;R
ðx; yÞ @2UðAÞ

@A�ðyÞ@A�ðyÞa
�ðyÞ

þB�
0 ½a�ðxÞ; (27)

we see that we can identify a�ðxÞ ¼ T A�ðxÞ provided
that we have

B �
0 ½a�ðxÞ ¼ T B�

0 ½A�ðxÞ: (28)

Because B0 is a linear functional of the initial value of the
color fields on the surface �, it is easy to see that the
operator T that fulfills this goal is

T �
Z
�
d3 ~u½a � Tu�; (29)

where Tu is the generator of translations of the initial
fields10 at the point u 2 �. We denote by d3 ~u the measure
on the surface � (for instance, if � is a surface defined by
x� ¼ const, this measure reads d3 ~u ¼ duþd2u?.) The de-
tailed expression of this operator can be obtained by writ-
ing explicitly the Green’s formula for the retarded
propagation of color fields above the surface �, and it
usually depends both on the choice of the surface and on
the choice of the gauge condition. An explicit expression of
this operator will be given in the next section when the
initial surface � is parallel to the light cone (u� ¼ const)
and when the fields are in the light-cone gauge Aþ ¼ 0.
Therefore, we have established the following identity,

a�ðxÞ ¼
Z
�
d3 ~u½a � Tu�A�ðxÞ: (30)

Equation (30) provides a formal expression of a fluctuation
at point x in terms of its value on some initial surface � [in
the right-hand side (r.h.s.) of Eq. (30), only the value of the
fluctuation a� on � appears]. This formula is especially
useful in situations where we can calculate analytically the
initial value of the fluctuation on �, but where we do not
know analytically the classical background field A above
this surface.

The single nucleus case is a bit academic in this respect
because one can analytically compute the background
gauge field and the fluctuation at any point in space-time.
Rather, Eq. (30) will prove especially powerful for nuclear
collisions because, in that case, one does not have an
analytic expression for the classical background field after
the collision.

Armed with Eq. (30), it is straightforward to write the
third term of the right-hand side of Eq. (16) as

Gij;bc
�þ ðx; yÞ ¼

X
	;a

Z d3k

ð2�Þ32Ek

Z
�
d3 ~ud3 ~v½½a�k	a � Tu�

�AibðxÞ�½½aþk	a � Tv�AjcðyÞ�: (31)

In this equation, the brackets limit the scope of the opera-
tors Tu;v.

D. Rearrangement of the NLO corrections—II

The terms involving the 1-loop correction �� can also
be written in terms of the operator Tu, but this is not as

straightforward as for Gij
�þ. The first step is to write down

the formal Green’s function solution of Eq. (17). It is
convenient to write it as

��ðxÞ

¼
Z
�þ

d4yD
��
R ðx;yÞ

1

2

@3UðAÞ
@A�ðyÞ@A�ðyÞ@A�ðyÞG

��
þþðy;yÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�
�
1
ðxÞ

þB�½��ðxÞ|fflfflfflfflffl{zfflfflfflfflffl}
��
2
ðxÞ

; (32)

where B�½A�ðxÞ is identical to B�
0 ½A�ðxÞ except that all

occurrences of the bare propagator D��
0;R

in the latter are

replaced in the former by the dressed propagator in the
background field A�. This dressed propagator, denoted
D��

R , satisfies the equation�
hxg

�� � @�x @�x � @2UðAÞ
@A�ðxÞ@A�ðxÞ

�
D�

R;�ðx; yÞ

¼ g���ðx� yÞ; (33)

plus a retarded boundary condition such that it vanishes if
x0 < y0.
The second term on the right-hand side of Eq. (32) is the

value � would have if one turns off the source term
(proportional to Gþþ) in the domain �þ above the initial
surface. It is therefore given by a formula identical to
Eq. (30),

�
�
2 ðxÞ ¼

Z
�
d3 ~u½� � Tu�A�ðxÞ: (34)

To calculate�1ðxÞ, let us first make explicit the interactions
with the background field by writing it as

��
1 ðxÞ ¼

Z
�þ

d4yD��
0;R
ðx; yÞ

�
@2UðAÞ

@A�ðyÞ@A�ðyÞ�
�
1 ðyÞ

þ 1

2

@3UðAÞ
@A�ðyÞ@A�ðyÞ@A�ðyÞG

��
þþðy; yÞ

�
: (35)

This expression is obtained by substituting the expression
for the dressed retarded propagator in terms of the free
retarded propagator in the definition of �

�
1 .

Consider now the quantity

��ðxÞ � 1

2

X
	;a

Z d3k

ð2�Þ32Ek

Z
�
d3 ~ud3 ~v½a�k	a � Tu�

� ½aþk	a � Tv�A�ðxÞ: (36)

We shall prove that �
�
1 and �� are identical. Using

Eq. (30), we can write

10For now, it is sufficient to think of this operator as an operator
which is linear in first derivatives with respect to the color field
on �.
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��ðxÞ¼1

2

X
	;a

Z d3k

ð2�Þ32Ek

Z
�
d3 ~u½a�k	a �Tu�a�þk	aðxÞ: (37)

Replace a�þk	aðxÞ in this equation by the r.h.s. of Eq. (27).

Because the boundary termB�
0 ½aþk	a�ðxÞ does not depend

on the initial value of the classical field A, the action of
½a�k	a � Tu� on this term gives zero. We thus obtain

��ðxÞ ¼ 1

2

X
	;a

Z d3k

ð2�Þ32Ek

Z
�
d3 ~u

Z
�þ

d4yD��
0;R
ðx; yÞ

�
@2UðAÞ

@A�ðyÞ@A�ðyÞ ½a�k	a � Tu�a�þk	aðyÞ

þ @3UðAÞ
@A�ðyÞ@A�ðyÞ@A�ðyÞ ½½a�k	a � Tu�A�ðyÞ�a�þk	aðyÞ

�

¼
Z
�þ

d4yD
��
0;R
ðx; yÞ

�
@2UðAÞ

@A�ðyÞ@A�ðyÞ �
�ðyÞ þ @3UðAÞ

@A�ðyÞ@A�ðyÞ@A�ðyÞG
��
þþðy; yÞ

�
; (38)

which is identical to Eq. (35). We therefore obtain ��
1 ðxÞ ¼ ��ðxÞ. Combining the two contributions �1 and �2, we finally

arrive at the compact expression

��ðxÞ ¼
�Z

�
d3 ~u½� � Tu� þ 1

2

X
	;a

Z d3k

ð2�Þ32Ek

Z
�
d3 ~ud3 ~v½a�k	a � Tu�½aþk	a � Tv�

�
A�ðxÞ: (39)

We can now use Eqs. (31) and (39) to obtain a compact expression for NLO corrections to O as

ONLOðx; yÞ ¼
�Z

�
d3 ~u½� � Tu�

þ 1

2

X
	;a

Z d3k

ð2�Þ32Ek

Z
�
d3 ~ud3 ~v½a�k	a � Tu�½aþk	a � Tv�

�
OLO½A�

þ �ONLOðx; yÞ; (40)

where we recall that OLO½A� is the same observable at
leading order, considered as a functional of the value of the
gauge fields on the initial surface �. The corrective term
�ONLOðx; yÞ is defined by

�ONLOðx; yÞ � 1

2

X
	;a

Z d3k

ð2�Þ32Ek

�
Z
�
d3 ~ud3 ~vf½½a�k	a � Tu�AibðxÞ�

� ½½aþk	a � Tv�AjcðyÞ�
� ½½aþk	a � Tu�AibðxÞ�
� ½½a�k	a � Tv�AjcðyÞ�g: (41)

As we shall see later, this term�ONLO does not contain any
large logarithm. Only the terms in the first and second lines
of Eq. (40) will be important for our later discussion of
factorization.

III. JIMWLK EVOLUTION FOR A SINGLE
NUCLEUS

Equation (40) is central to our study of NLO corrections
and of factorization. In the rest of this section, wewill show
how this formula is used to derive the JIMWLK evolution
equation. In Sec. IV, wewill show that it can be generalized
to the collision of two nuclei. A very convenient choice of

initial surface � in the derivation of the JIMWLK equation
is the surface defined by x� ¼ 
. One should choose 
 so
that all the color sources of the nucleus are located in the
strip 0 	 x� 	 
. An illustration of the objects involved in
Eq. (40) and their localization in space-time is provided in
Fig. 3.

FIG. 3 (color online). NLO corrections in the single nucleus
case, seen as an initial value problem on the surface x� ¼ 
. The
shaded area represents the domain where the nuclear color
sources live (0 	 x� 	 
). The field fluctuations represented
by wavy lines continue to evolve in the region x� > 
 until
they hit the operator we want to evaluate. However, this evolu-
tion is entirely hidden in the dependence of the classical field
upon its initial value at x� ¼ 
, and we do not need to consider it
explicitly.
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A. Gauge choice

We need first to choose the gauge in which to perform
this calculation. Because the observable we wish to calcu-
late and everything else in Eq. (40) are expressed in terms
of light-cone gauge (Aþ ¼ 0) quantities, we need to obtain
a�k	a and � in this gauge as well. However, as previously
mentioned, covariant current conservation is most easily
preserved in a gauge where the field fluctuations have no�
component. This is because they do not induce a precession
of the color current Jþ while crossing the light cone. We
are therefore going to adopt the strategy advocated in
Refs. [17,19,52,53], which consists in performing inter-
mediate calculations in a gauge where A� ¼ 0 and then
gauge transforming the final result to Aþ ¼ 0 gauge.

As discussed in detail in Appendix B, if one uses the LC
gauge and the surface u� ¼ 
 as the initial surface, the
linear differential operator a � Tu that appears in the iden-
tity (30) should be defined as11

a � Tu ¼ @�ð�ðuÞaiðuÞÞ �

�ð@�ð�ðuÞAiðuÞÞÞ
þ�ðuÞa�ðuÞ �

�ð�ðuÞA�ðuÞÞ
þ @�ð�ðuÞa�ðuÞÞ �

�ð@�ð�ðuÞA�ðuÞÞÞ ; (42)

where� is the adjoint color matrix12 that will be defined in
Eq. (46). Note that this operator in Eq. (42) contains a term
for each of the field components that must be specified on
the initial surface to know completely the field above this
surface. This operator Tu can therefore be interpreted as
the generator of translations of the initial condition for a
classical solution of the Yang-Mills equations. It is also
important to note that the fluctuation field a�ðuÞ that multi-
plies this operator is evaluated just above the initial surface
(at u� ¼ 
). Therefore, because one does not require its
entire history beyond this surface, it can, in general, be
calculated analytically.

B. Classical field

Let us recall the structure of the classical background
field itself. As is well known, the field in the Lorenz gauge
(@�A

� ¼ 0) has no A� component, and therefore fulfills

the A� ¼ 0 condition. Its explicit expression in terms of
the color source13 ~� is given by

~AþðxÞ ¼ � 1

@2
?
~�ðx�; x?Þ; ~A� ¼ ~Ai ¼ 0: (43)

The gauge transformation that relates the classical back-
ground fields in the Aþ ¼ 0 gauge and the corresponding
fields in Lorenz gauge is14

A� ¼ �y ~A��þ i

g
�y@��; (44)

where the tilde denotes fields in the Lorenz gauge; those
without a tilde are in light-cone gauge. Using the light-
cone gauge condition Aþ ¼ 0, we get

@þ� ¼ ig ~Aþ�; (45)

which admits the Wilson line

�ðx�; x?Þ � T exp

�
ig

Z x�

�1
dz� ~Aþ

a ðz�; x?ÞTa

�
(46)

as a solution. Note that because the color sources do not

depend on xþ, ~Aþ and� depend only on x� and x?. The
solution of the classical equations of motion in light-cone
gauge is then

Aþ ¼A� ¼ 0;

AiðxÞ ¼ i

g
�yðx�; x?Þ@i�ðx�; x?Þ:

(47)

We should comment here on the residual gauge freedom
of the classical solution. The most general solution of
Eq. (45) is

�ðx�; x?Þ�ðxþ; x?Þ; (48)

where� is an arbitrary x�-independent gauge transforma-
tion. With this more general choice, one obtains

Aþ ¼ 0; A� ¼ i

g
�y@��;

Ai ¼ �y
�
i

g
�y@i�

�
�þ i

g
�y@i�:

(49)

The arbitrariness in the solution is because the condition
Aþ ¼ 0 does not completely fix the gauge, and
x�-independent �’s span the residual gauge freedom.
Requiring that the classical gauge field be of the form
given in Eq. (47) amounts to the choice� � 1. This choice
is assumed in the rest of this paper.

C. Field fluctuations on the light cone

To readers familiar with the structure of the JIMWLK
Hamiltonian, the structure of Eq. (40) is already sugges-

11We have omitted the color indices in this equation. � should
be understood as a matrix in the SUðNÞ group, and A as a
column vector. �A is therefore a column vector whose com-
ponents are ð�AÞc � �cbAb.
12At first sight, � does not play any role in the definition of
Tu—the necessity to introduce this matrix � in the definition of
Tu is also explained in Appendix B.
13The density � of color sources is a gauge-dependent quantity.
When defined in the Lorenz gauge, we denote it with a tilde.

14In this expression, � is a matrix in the group SUðNÞ, while
~A is a matrix in the adjoint representation of the algebra
SUðNÞ. The product �y ~A� is a matrix in the SUðNÞ algebra.
Note that, depending on the context, we use the same symbol for
an element A of the algebra (i.e. a matrix) and for the vector
column made of its components Ac on the basis of the algebra.
The relation between the two is of course A ¼AcT

c.
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tive. In the rest of this section, wewill show that the leading
logarithmic contributions in this formula—terms that are
linear in the rapidity differences between the projectile and
target relative to the observed gluon—can be absorbed into
a redefinition of the distribution of color sources of the
nucleus. Our first task towards this conclusion is to com-
pute the value of the field fluctuations a�k	a and � just
above the light cone on the initial surface u� ¼ 
.

Let us consider a small fluctuation a� on top of the
classical field A�. The relation between the two gauges
must be modified,

A � þ a� ¼ ��yð ~A� þ ~a�Þ ��þ i

g
��y@� ��; (50)

with
�� � ð1þ ig!Þ�; (51)

where ! has components of order unity. Using this ansatz

in Eq. (50), and keeping in mind that A; ~A�Oðg�1Þ
while a; ~a�Oð1Þ, we obtain the relation

a� ¼ �yð~a� � ig½!; ~A�� � @�!Þ�: (52)

To determine !, as previously, apply the gauge condition
aþ ¼ 0. This gives

@þ!þ ig½!; ~Aþ� ¼ ~aþ; (53)

the solution of which can be written as

!ðxÞ ¼ �ðx�; x?Þfðxþ; x?Þ
þ

Z x�

�1
dz��ðx�; z�; x?Þ~aþðz�; xþ; x?Þ: (54)

In this equation f is an arbitrary function that does not
depend on x�, and �ðx�; z�; x?Þ is an ‘‘incomplete’’
Wilson line defined by

�ðx�;z�;x?Þ�Texp

�
ig
Z x�

z�
dz� ~Aþ

a ðz�;x?ÞTa

�
: (55)

The arbitrariness in the choice of the function fb again
means that there is a residual gauge freedom after we have
imposed aþ ¼ 0.

A crucial point in our derivation is how the residual
gauge freedom is fixed. We need small field fluctuations
in order to represent the propagators as in Eqs. (20) and
(23) as bilinear forms in these fluctuations. These equa-
tions are valid only if the initial values of the fluctuations
a�k	a are plane waves with on-shell momenta; one can
check easily that this is true for the free propagators. Thus
Eq. (54) must give plane wave solutions for the field
fluctuations in light-cone gauge when x� < 0. This is
simply achieved by taking plane waves for the fluctuation
~a� in the original gauge and setting the function f to
zero.15 Therefore, the requirement that Eqs. (20) and (23)
be valid leaves no residual gauge freedom.

We only need to know ! on our initial surface �—at
x� ¼ 
. Because the components of � and of ~a are all of
order unity, it is legitimate to neglect the values of z� that
are between 0 and 
 in the integration in Eq. (54). For x� ¼

 and z� < 0, the incomplete Wilson line is equal to the
complete Wilson line (which has the lower bound at �1).
We therefore obtain

!ðx� ¼ 
Þ ¼ �ðx?Þ
Z 0

�1
dz�~aþðz�; xþ; x?Þ: (56)

Note also that when 
 	 x�, the Wilson line becomes
independent of x� because all the color sources are in
the strip 0 	 x� 	 
. This explains why we only indicate
x? in its list of arguments.
Once! has been determined, the� and i components of

the fluctuation in light-cone gauge are determined from
those in the A� ¼ 0 gauge to be

a� ¼ �yð�@�!Þ�; ai ¼ �yð~ai � @i!Þ�: (57)

As we shall see shortly when we discuss the leading
logarithmic divergences, the only quantity we need is16

@�½�a��y� ¼ @�½~a� � @�!� ig½!; ~A���
¼ �@þ@�!� @i½~ai � @i!�; (58)

where we have used Eq. (53) and the fact that ~a� ¼ 0 in
order to eliminate a few terms. Using the equation for @þ!,

as well as the fact that ~Aþ is zero at x� ¼ 
, we get

@�½�a��y� ¼ @2
?!� @�~aþ � @i~ai: (59)

Let us now consider specifically the fluctuations a�k	a.
In the gauge ~a� ¼ 0, their expression below the light-cone
reads17

~a
�
�k	aðxÞ ¼ ~


�
	 ðkÞTae�ik�x; (60)

with

~
�	 ðkÞ ¼ 0;
X

	¼1;2
~
i	ðkÞ~
j	ðkÞ ¼ �gij;

~
þ	 ðkÞ ¼
k? � ~�	?ðkÞ

k�
:

(61)

The formulas that govern the light-cone crossing in this
gauge have been worked out in [54]. Using these results,
one finds the following expressions for the fluctuation
fields just above the light cone:

15We note that it is also possible to choose ~a�’s that are not
plane waves, and a nonzero f to achieve our requirement that a�

be a plane wave. This, however, makes the intermediate calcu-
lations more tedious.

16Note that ð�A�yÞc ¼ �cbAb, from the definition of the
adjoint representation. With the notation where A is a column
vector, this quantity would also be denoted by ð�AÞc.
17Therefore, ~a

�b
�k	aðxÞ ¼ ~


�
	 ðkÞ�abe�ik�x.
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~a ib
�k	aðxÞ ¼ �baðx?Þ~
i	ðkÞe�ik�x;

~aþb�k	aðxÞ ¼ ½�baðx?Þ~
þ	 ðkÞ � ð@i�baðx?ÞÞ

� 1

ik�
~
i	ðkÞ�e�ik�x:

(62)

Note that for these field fluctuations, one has

@�~aþ�k	a ¼ @i~ai�k	a: (63)

Thus we have

@�½�a
�
�k	a�

y� ¼ @i½@i!� 2~ai�k	a�: (64)

Substituting Eq. (60) in Eq. (56) gives the following ex-
pression for ! just above the light cone,

!b ¼ 
2i�ba

kj

k2?
~
j	ðkÞe�ik�x: (65)

Therefore,

@�½�a
�
�k	a�

y�b ¼ �2@i½e�ik�x�ilb
�ka


l
	ðkÞ�; (66)

where we have introduced the shorthand notation


l	ðkÞ �
�
�lm � 2

klkm

k 2
?

�
~
m	 ðkÞ;

�ilb
�ka �

�
�il � kikl

k2?

�
�ba 
 i

kl

k2?
@i�ba:

(67)

D. Logarithmic divergences

Let us recall that our objective is to isolate the leading
logarithmic contributions to Eq. (40). From the structure of
this equation, isolating these contributions requires that we
examine Eq. (42) term by term. As we shall see later, the
contribution in � � T (‘‘virtual correction’’) can be derived
from the term bilinear in T (‘‘real correction’’). Therefore,
let us concentrate on the bilinear term for now.

To determine the leading logarithmic contributions in
the real correction, we need to consider the integration over
the on-shell momentum k� as well. It involves an integral

Z þ1
0

dkþ

kþ
; (68)

which potentially leads to logarithmic singularities both at
kþ ! 0 and at kþ ! þ1. Note that wherever k� appears
in the integrand, it should be replaced by the on-shell value
k� ¼ k2?=2k

þ. Inspecting the integrand of Eq. (40), one

sees that the kþ dependence contains exponential factors

eiðk
2
?=2k

þÞðvþ�uþÞ: (69)

There is no factor depending on v� � u�, because the
points u and v are both on the initial surface �, and thus
have equal� coordinates. It is clear the integral converges
at kþ ! 0þ thanks to the oscillatory behavior of this
exponential. On the other hand, when kþ ! þ1, the ex-
ponential goes to unity and one may have a logarithmic
singularity there. However, to truly have a divergence, the
other factors in the integrand should not have any power of
1=kþ.
Let us now examine these. The coefficients in the op-

erator a � Tu are the initial values of �a�; @�ð�aiÞ and
@�ð�a�Þ. We need only to keep the coefficients that have

no power of 1=kþ. One sees readily that this is not the case
for �a� or @�ð�aiÞ: these two quantities [compare
Eq. (57) to Eqs. (58) and (59)] contain a factor k� � 1=kþ.
Thus, as previously anticipated, the only divergence

arises when one picks up the term @�ð�a�Þ both in a �
Tu and a � Tv.
In order to regularize the integral over kþ, we must

introduce an upper bound �þ. Physically, this cutoff is
related to the division of degrees of freedom one operates
with in the CGC: the color sources describe the fast partons
and thus correspond to modes kþ >�þ, while the fields
represent the slow degrees of freedom that have a longitu-
dinal momentum kþ <�þ. Therefore, when one performs
a calculation in this effective description, the longitudinal
momentum of all the fields and field fluctuations should not
exceed �þ, in order not to overcount modes that are al-
ready represented as part of the color sources �. The lower
scale in this logarithm is of the order of the longitudinal
momentum pþ of the produced gluon. Therefore, the
logarithm resulting from the kþ integration is a logarithm
of �þ=pþ.
The determination of the lower bound in the kþ integral

is the place where it is crucial to consider an observable
that depends only on a single scale of longitudinal momen-
tum (or rapidity)—in order to avoid an ambiguity in the
value of this lower bound. Obviously, this condition is
satisfied by the single inclusive gluon spectrum. But as
one can see in [27], this restriction limits the generalization
of this result to the multigluon spectrum to the case where
all the measured gluons have similar rapidities.
To pick up the logarithm, one should approximate the

exponential by unity. This implies that the coefficient of
the logarithm is independent of uþ and vþ or, in other
words, it is invariant under boosts in the þz direction. As
we shall see, such perturbations of @�ð�a�Þ can be

mapped to a change in the color source ~�, and these
logarithms can be absorbed in a redefinition of the distri-
bution W½~��.

E. Real corrections

Keeping only the term in @�ð�a�Þ in Eq. (42), and

limiting ourselves to the divergent part of the real correc-
tion for now, we see that we must evaluate the operator
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1

2�
ln

�
�þ

pþ

�Z d2k?
ð2�Þ2

Z
d2u?d2v?

X
a

@ið�ilb
�kaðuÞeik?�u?Þ

� @jð�jlc
þkaðv?Þe�ik?�v?Þ

Z
duþdvþ

� �2

�@��ðuÞbdA�
d ðuþ; u?Þ�@��ðvÞceA�

e ðvþ;v?Þ :

(70)

Here, to avoid any confusion, we have written explicitly all
the color indices. Note also that we have performed the
sum over the two polarization states of the field fluctuation
in this expression.18

The object on which this operator acts is the observable
calculated at leading order, considered as a functional of
the initial value of the fieldsAi in light-cone gauge. In this
gauge, the initial values of Aþ and A� are zero (pro-
vided the residual gauge freedom is fixed as explained in
Sec. III B). Moreover, from the setup of the problem, it
turns out that these initial fields do not depend on xþ,

A iðxþ; x?Þ ¼Aiðx?Þ; (71)

and

@��ðuÞbdA�
d ðuþ; u?Þ ¼ �@i�ðu?ÞbdAi

dðu?Þ: (72)

When we restrict ourselves to functionals that depend only
on xþ-independent initial fields, we can simply write19

Z
duþ

�

�@��ðuÞbdA�
d ðuþ; u?Þ

¼ � �

�@i�ðu?ÞbdAi
dðu?Þ

: (73)

Our goal now is to relate the leading logarithmic con-
tribution we have identified to the JIMWLK evolution of
the distribution of color sources. As we have seen in the
previous sections, the initial value of the field in light-cone
gauge has a simple expression when expressed in terms of

the sources ~� or fields ~Aþ in Lorenz gauge. Therefore, we
will try to make the connection with the JIMWLK equation
in this gauge. To do this, we must relate the functional
derivative �=�@i�ðu?ÞbdAi

dðu?Þ to the functional deriva-

tive �=� ~Aþ. We begin by considering the light-cone
gauge expression for the classical transverse gauge fields
given by Eqs. (46) and (47). Rewriting Aiðx?Þ more
explicitly as

A iðx�; x?Þ ¼ �
Z x�

�1
dz��yðz�; x?Þ

� ð@i ~Aþðz�; x?ÞÞ�ðz�; x?Þ; (74)

one observes that a variation20 � ~Aþð
; x?Þ of the field in
covariant gauge in the last x� bin (of width dx�) leads to a
change �Aiðx?Þ of the initial value of the gauge field in
light-cone gauge, given by

�Aiðx?Þ ¼ ��yðx?Þð@i� ~Aþð
; x?Þdx�Þ�ðx?Þ: (75)

From this formula, we get the variation of
@i�ðu?ÞbdAi

dðu?Þ,
�½@i�ðu?ÞbdAi

dðu?Þ� ¼ �@2
?� ~Aþð
; x?Þdx�: (76)

Inverting this relation, one obtains

�

�@i�ðu?ÞbdAi
dðu?Þ

¼ �
Z

d2x?Gðu? � x?Þ

� �

� ~Aþ
b ð
Y; x?Þ

: (77)

Here Gðu? � x?Þ is a two-dimensional propagator whose
main properties are discussed in Appendix C.
It is important to observe that the functional derivatives

on the left-hand side (l.h.s.) and right-hand side of this
equation do not have the same dimensions. This is because
they are defined with respect to fields that live in spaces
with different dimensions. On the left-hand side, the initial
transverse field in light-cone gauge does not depend on x�
as soon as we are outside the nucleus and is therefore a

function of u? only. On the right-hand side, the field ~Aþ

depends crucially on x�. The 
Y argument in the right-
hand side of Eq. (77) is not integrated over, and should be
chosen as the value of x� where the last layer of quantum
evolution has produced its partons. This is the same as the
location 
 of the surface � used for the initial conditions,
but the subscript Y indicates that it may shift as the rapidity
Y increases.
We can now rewrite the operator in Eq. (70) as follows:

1

2
ln

�
�þ

pþ

�Z
d2x?d2y?bcðx?; y?Þ

� �2

� ~Aþ
b ð
Y; x?Þ� ~Aþ

c ð
Y; y?Þ
; (78)

18A useful identity is

�
�il � 2

kikl

k2?

��
�lj � 2

klkj

k2?

�
¼ �ij:

19It is useful to recall that the dimension of a functional
derivative operator is Mass�dðAÞ�D where dðAÞ is the mass
dimension of the field with respect to which one is differentiat-
ing, and D the mass dimension of the space in which this field
lives. For instance,

�

�Ai
bðuþ; u?Þ

�Mass2;
�

�Ai
bðu?Þ

�Mass1:

20It is natural that the size of the bin in which the field ~Aþ is
changed plays a role here. Indeed, because ~Aþ is integrated
over x� in the expression of Ai, a change in a bin of zero width
produces no change in Ai. Note also that the factor dx� in
Eq. (75) is necessary on dimensional grounds.
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where we have defined21

bcðx?; y?Þ � 1

4�3

Z d2k?
ð2�Þ2

Z
d2u?d2v?

�X
a

�ilb
�kaðu?Þ�jlc

þkaðv?Þeik?�ðu?�v?Þ

� ui? � xi?
ðu? � x?Þ2

vj
? � yj?

ðv? � y?Þ2
: (79)

From Eq. (67), �ilb
�ka can naturally be broken in two terms.

If we keep only the first term in each of the �’s in Eq. (79),
we obtain correspondingly

bc
ð1Þðx?;y?Þ¼�

1

8�4

Z
d2u?d2v?

ðxi?�ui?Þ
ðx?�u?Þ2

ðyj?�vj
?Þ

ðy?�v?Þ2
��ijðu?�v?Þ
�½�ðuÞ�yðvÞ�1�bc: (80)

Here the function �ij is defined in Eq. (C11) of
Appendix C. When we keep the first term in the first �
and the second term in the second � (or vice versa), we get
zero because the two terms in� are mutually orthogonal. If
we keep the second term in each of the �’s, we obtain

bc
ð2Þðx?; y?Þ ¼

1

�

Z d2u?
ð2�Þ2

ðxi? � ui?Þðyi? � ui?Þ
ðx? � u?Þ2ðy? � u?Þ2

� ½�ðxÞ�yðyÞ ��ðxÞ�yðuÞ
��ðuÞ�yðyÞ þ 1�bc þ 1

8�4

Z
d2u?d2v?

� ðx
i
? � ui?Þ

ðx? � u?Þ2
ðyj? � vj

?Þ
ðy? � v?Þ2

�ijðu? � v?Þ

� ½�ðuÞ�yðvÞ � 1�bc: (81)

When we add the two contributions, the terms involving
�ij cancel, and we are finally left with

bcðx?; y?Þ ¼ 1

�

Z d2u?
ð2�Þ2

ðxi? � ui?Þðyi? � ui?Þ
ðx� uÞ2ðy� uÞ2

�½�ðxÞ�yðyÞ ��ðxÞ�yðuÞ
��ðuÞ�yðyÞ þ 1�bc: (82)

This function is precisely the function bcðx?; y?Þ that
appears in the JIMWLK equation [17,19].

At this point, a word must be said of the term �ONLO in
Eq. (40). It is given by the difference of two terms that can
be obtained from each other by exchanging aþk	a and
a�k	a. Going back to the calculation of bcðx?; y?Þ, it is
easy to check that for the calculation of the leading log
term these two terms give the same result and cancel.
Physically this is due to charge conjugation symmetry—

because the classical field is real, we obtain the same result
by exchanging the negative and positive energy asymptotic
solutions for the quantum fluctuation; �ONLO is the dif-
ference between these two and thus cancels out.

F. Virtual corrections

In the previous subsection, we focused on the real con-
tribution to Eq. (40). We now turn our attention to the term
in � � Tu in Eq. (40). Recall that �� is the 1-loop correc-
tion to the classical field in the LC gauge and is evaluated
in Eq. (40) at u� ¼ 
, just above the region occupied by
the nuclear sources. Mimicking the evaluation of the real
contribution, we can write directly22

Z
u�¼


duþd2u?½� � Tu�

¼
Z

d2x?
Z

d2u?Gðx? � u?Þ@u�ð�ðuÞbd��
d ðuÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ln

�
�þ
pþ

�
�bðx?Þ

� �

� ~Aþ
b ð
Y; x?Þ

: (83)

We anticipate that a large logarithm in the kþ integral will
show up in this quantity, and we have defined �bðx?Þ as its
coefficient. Note that in this definition of the function
�bðx?Þ, the value23 of u� is u� ¼ 
.
We begin with Green’s formula for the 1-point function

��ðuÞ, where the initial surface is taken at v� ¼ 0 (instead
of v� ¼ 
),

��ðuÞ ¼
Z
v�>0

d4vD��
0;R
ðu; vÞ

�
@2UðAÞ

@A�ðvÞ@A�ðvÞ�
�ðvÞ

þ 1

2

@3UðAÞ
@A�ðvÞ@A�ðvÞ@A�ðvÞG

��
þþðv; vÞ

�
:

(84)

By this choice of the initial surface, we do not have a
boundary term, because �� is zero at u� 	 0. The propa-
gator G��

þþðv; vÞ can be expressed in terms of the field
fluctuations a�k	a by using Eq. (23). Consider now the
Green’s formula for the fluctuation aþk	a we introduced in
Eq. (27), but written this time for an initial surface at u� ¼
0,

a�þk	aðxÞ ¼
Z
y�>0

d4yD��
0;R
ðx; yÞ @2UðAÞ

@A�ðyÞ@A�ðyÞa
�
þk	aðyÞ

þB�
0 ½aþk	a�: (85)

21We performed along the way an integration by parts and used
the identity in Eq. (C8).

22One can confirm that ð�Þbd��d and @�ð�Þbd�i
d are zero and

therefore cannot appear in the operator ½� � Tu�.
23The value of uþ is irrelevant because the 1-point function
��ðuÞ propagating over an xþ-independent background field
(and with a vanishing initial condition in the past) is independent
of uþ.
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In this formula, both the fluctuation aþk	a and the deriva-
tive of the gauge potential depend on the background
classical field in LC gauge. Let us apply to this equation
the operator24 ½a�k	a �T � that substitutes one power of the
background field by a power of a�k	a. By defining

��ðuÞ � 1

2

X
	;a

Z d3k

ð2�Þ32Ek

�
Z
v�>0

d4v½a�k	a �T v�a�þk	aðuÞ; (86)

we obtain for this object Green’s formula

��ðuÞ ¼
Z
v�>0

d4vD��
0;R
ðu; vÞ

�
@2UðAÞ

@A�ðvÞ@A�ðvÞ�
�ðvÞ

þ 1

2

@3UðAÞ
@A�ðvÞ@A�ðvÞ@A�ðvÞG

��
þþðv; vÞ

�
;

(87)

where we used Eq. (23) for the propagator that appears in
the source term. We see that �� and �� are identical.
Therefore, we have proved that

��
d ðuÞ �

1

2

X
	;a

Z d3k

ð2�Þ32Ek

�
Z
v�>0

d4v½a�k	a �T v�a�d
þk	aðuÞ: (88)

Inserting this expression into the definition of �bðx?Þ,
we obtain

ln

�
�þ

pþ

�
�bðx?Þ ¼ 1

2

X
	;a

Z d3k

ð2�Þ32Ek

�
Z
v�>0

d4v½a�k	a �T v�

�
Z

d2u?Gðx? � u?Þ

� @u�ð�ðuÞbda�d
þk	aðuÞÞ: (89)

To obtain a divergence at large kþ, we need to tame the
oscillations in this variable which exist because we now

have u� ¼ 
while v� can be anywhere in the range ½0; 
�.
These oscillations are damped only if v� is in the imme-
diate vicinity of u� ¼ 
. As a corollary, note that the left
diagram in Fig. 3 is therefore a bit misleading because the
tadpole contribution depicted vanishes when the upper
vertex of the tadpole is below the light cone. In fact, to
have a leading logarithmic contribution, this vertex of the
tadpole must be very close to the surface u� ¼ 
, as
illustrated in Fig. 4.
For sufficiently small dx�, we can use

lim
dx�!0

Z 



�dx�
dv�½a�k	a �T v� ¼ a�k	a � Tv; (90)

namely, we recover the operator that substitutes the back-
ground field by the fluctuation in the last layer at v� ¼ 
.
Again, using Eqs. (73) and (77) from the previous subsec-
tion, we obtain the operator

Z
v�¼


dvþd2v?½a�k	a � Tv�

¼
LLog

Z
d2y?

Z
d2v?Gðy? � v?Þ

� @v�ð�ðvÞcea�e�k	aðvÞÞ
�

� ~Aþ
c ð
Y; y?Þ

: (91)

When inserted in Eq. (89), this gives

ln

�
�þ

pþ

�
�bðx?Þ ¼ 1

2

Z
d2y?

X
	;a

Z d3k

ð2�Þ32Ek

Z
d2v?Gðy? � v?Þ@v�ð�ðvÞcea�e�k	aðvÞÞ

� �

� ~Aþ
c ð
Y; y?Þ

Z
d2u?Gðx? � u?Þ@u�ð�ðuÞbda�d

þk	aðuÞÞ: (92)

Note that the products of the underlined terms, by themselves, are just

O x
-  =

 ε

FIG. 4 (color online). Leading logarithmic contribution of the
tadpole diagram.

24This operator is similar to the operator a � T previously defined, but it performs the replacement of fields inside the region of the
sources, instead of just on the surface of this region.
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ln

�
�þ

pþ

�
bcðx?; y?Þ: (93)

The final step in our derivation is to note that when ~A
shares a color index with �, we have the identity
[17,19,55]

�

� ~Aþ
c ð
Y; y?Þ

@v�ð�ðvÞcea�e�k	aðvÞÞ ¼ 0; (94)

because of the antisymmetry of the adjoint generators of
SUðNÞ. We can therefore move the operator
�=� ~Aþ

c ð
Y; y?Þ immediately after the measure d2y? to
obtain

�bðx?Þ ¼ 1

2

Z
d2y?

�

� ~Aþ
c ð
Y; y?Þ

bcðx?; y?Þ; (95)

which is identical to the relation between bc and �b in the
JIMWLK equation.

G. JIMWLK equation

We shall now combine the real and virtual corrections to
write the JIMWLK equation. Using the real correction in
Eq. (78) and the virtual one given by Eqs. (83) and (95), we
can write the total NLO correction, Eq. (40), in the form

O NLO ¼
LLog

ln

�
�þ

pþ

�
HOLO½ ~Aþ� (96)

where we have introduced the JIMWLK Hamiltonian,

H � 1

2

Z
d2x?d2y?

�

� ~Aþ
c ð
Y; y?Þ

bcðx?; y?Þ

� �

� ~Aþ
b ð
Y; x?Þ

: (97)

Although the coupling does not appear explicitly in the
Hamiltonian, it is of order �s because of the presence of
two functional derivatives with respect to classical fields
that are of order g�1.

We noted that the observable O at leading order can be

expressed as a functional of the classical gauge field ~Aþ

in covariant gauge. The average of this observable over all

the configurations of the field ~Aþ, up to NLO, can be
expressed as

hOLO þONLOi �
Z
½D ~Aþ�W½ ~Aþ�½OLO þONLO�:

(98)

At the leading logarithmic level, this can be rewritten as

hOLO þONLOi ¼
LLog

Z
½D ~Aþ�f½1þ �YH �W½ ~Aþ�g

�OLO½ ~Aþ�; (99)

where we denote �Y � lnð�þ=pþÞ. Note that �Y is also
the rapidity interval between the slowest incoming sources

(that have kþ ��þ) and the measured gluon. To obtain
this equation, one uses the Hermiticity of H with respect

to the functional integration over ~Aþ. In writing this
equation, we have absorbed all the leading logarithms of

kþ into a redefinition of the distribution W½ ~Aþ�,
W½ ~Aþ� ! ½1þ�YH �W½ ~Aþ�: (100)

This suggests that the distribution W½ ~Aþ� should depend
on the scale�þ that separates the modes described as static
sources from the modes described as dynamical fields in
the CGC description. Of course, this is not surprising in an
effective theory based on such a separation of the degrees
of freedom. For this reason, it should be denoted as

W�þ½ ~Aþ�. Therefore Eq. (99) can be written as

hOLO þONLOi ¼
LLog

Z
½D ~Aþ�

��
1þ ln

�
�þ

pþ

�
H

�

�W�þ½ ~Aþ�
�
OLO½ ~Aþ�: (101)

Because �þ is a an unphysical separation scale, the ex-
pectation value of observables should not depend on this
parameter. Differentiating the previous equation with re-
spect to �þ and requiring that the r.h.s. be zero, we get25

@

@ lnð�þÞW�þ½ ~Aþ� ¼ �HW�þ½ ~Aþ�: (102)

Equivalently, if Y � lnðPþ=�þÞ denotes the rapidity sepa-
ration between the fragmentation region of the nucleus
(located at kþ � Pþ) and the rapidity down to which
partons are described as static color sources, we have

@

@Y
WY½ ~Aþ� ¼HWY½ ~Aþ�; (103)

which is the JIMWLK equation that drives the Y depen-

dence of the distribution WY½ ~Aþ�.
The above considerations also indicate that the distribu-

tion WY½ ~Aþ� must be evolved to a scale �þ comparable
to the typical longitudinal momentum in the observable to
avoid large residual logs contributing to the latter.
Therefore, at leading logarithmic accuracy, the expectation
value of the observable is given by

hOiLLog ¼
Z
½D ~Aþ�WY½ ~Aþ�OLO½ ~Aþ�; (104)

with Y ¼ lnðPþ=pþÞ the rapidity separation between the

beam and the observable and WY½ ~Aþ� given by the solu-
tion of Eq. (103).

25To avoid confusion, recall thatH , and hence @W=@�þ, is of
order �s. Therefore, for consistency, one should not keep the
term proportional to H ð@W=@�þÞ because it is of order �2

s and
therefore beyond the accuracy of the present calculation.
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H. All-order resummation of leading logs

Thus far, we only considered 1-loop corrections that
generate one power of the large logarithm of Pþ. On this

basis, we deduced an evolution equation forW½ ~Aþ� using
renormalization group arguments. However, the solution of
the RG equation is equivalent to a resummation of all
n-loop diagrams that have n powers of large logarithms
of pþ. We shall analyze here the structure of higher loop
contributions to confirm whether the all-loop resummation
performed by the RG equation is justified.

Here we will not perform a detailed analysis of these
leading n-loop graphs to show that we indeed recover the
solution of Eq. (103). More modestly, we will work a
posteriori by examining the solution of the JIMWLK
equation to see what the n-loop graphs that it resums are.
Before proceeding, it is useful to recall a crucial property
of the JIMWLK Hamiltonian defined in Eq. (97). The
operator H contains derivatives with respect to the field
~Aþð
Y; x?Þ, and its coefficients depend on all the fields
~Aþðx�; x?Þ for 0 	 x� 	 
Y . For this reason, we will
denote it H ðYÞ, where the endpoint 
Y at which the
derivatives act is related to Y by Y � lnð
YÞ. It is important
to note that in a product H ðy1ÞH ðy2Þ, the derivatives in
H ðy1Þ do not act on the coefficients of H ðy2Þ if y1 > y2.

The JIMWLK equation should now be written as

@

@Y
WY½ ~Aþ� ¼H ðYÞWY½ ~Aþ�; (105)

and its solution reads

WY½ ~Aþ� ¼UðYÞW0½ ~Aþ�; (106)

with

U ðYÞ � TY

�
exp

Z Y

0
dyH ðyÞ

�
: (107)

In this equation, TY denotes a ‘‘rapidity ordering’’ such that
products of H ’s in the Taylor expansion of the exponen-
tial are ordered from left to right in order of decreasing y.

W0½ ~Aþ� is a nonperturbative initial condition.UðYÞ is the
evolution operator for the Hamiltonian H ðYÞ. Inserting
Eq. (106) into Eq. (104), we get

hOiLLog ¼
Z
½D ~Aþ�W0½ ~Aþ�UyðYÞOLO½ ~Aþ�: (108)

Because H ðyÞ is Hermitian, the Hermitian conjugate of
the evolution operator UðYÞ is the same operator with the
rapidity ordering reversed:

U yðYÞ � �TY

�
exp

Z Y

0
dyH ðyÞ

�
; (109)

where �TY denotes the antirapidity ordering. The expansion
of Uy to order one in H gives the leading logarithmic 1-
loop contributions that we have evaluated earlier in this
section. [See Eq. (99), for instance.]
If one expands it to second order, we see that the leading

logarithmic contributions in the observable at 2 loops
should be given by

O NNLO ¼
LLog

Z Y

0
dy1

Z y1

0
dy2H ðy2ÞH ðy1ÞOLO½ ~Aþ�:

(110)

Because y2 < y1, the derivatives in H ðy2Þ can act on the
coefficients  and � of H ðy1Þ. Let us first consider the
terms where this does not happen, namely, where the

derivatives in H ðy2Þ act directly on OLO½ ~Aþ�. These
terms correspond to the graphs depicted in Fig. 5. If we
look only at what happens below the line x� ¼ 
, these
contributions are just disconnected products of terms we
had already at 1 loop. The analysis we performed of the
logarithmic contributions at 1 loop extends trivially to
these terms, and it is easy to see that they have two powers
of the logarithms.
In addition, Eq. (110) also contains terms in which at

least one of the derivatives in H ðy2Þ acts on the coeffi-
cients ofH ðy1Þ. This corresponds to topologies of the type
displayed in Fig. 6. Such terms, that have a gluon vertex
inside the region where the sources live, have a large
logarithm for the same reason that the tadpole has a loga-
rithm in the 1-loop terms. Thus one can see that it is crucial
to properly order the powers of the Hamiltonian H in
rapidity to avoid losing these terms.26

x
-  =

 ε
x
-  =

 ε
x
-  =

 ε

FIG. 5 (color online). The 2-loop contributions made of products of pieces already encountered at 1 loop. Although we do not make
this distinction in the figure, one of the factors is attached at a slightly smaller value of x�, because the two Hamiltonians in Eq. (110)
are at different rapidities.

26For instance, if the ordering of the two Hamiltonians in
Eq. (110) is reversed, we get only the terms of Fig. 5.
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Finally, there also exist at 2 loops some topologies that
never appear in Eq. (110), such as those of Fig. 7. The
contributions in this figure are 1-loop corrections to the
coefficients of the operators Tu;v in Eq. (40). In other

words, these terms generate corrections of order �s to the
coefficients in the JIMWLK equation, and do not have
double logs of �þ. This explains why they are not gen-
erated by the leading log formula in Eq. (110).

IV. NUCLEUS-NUCLEUS COLLISIONS

In the previous section, we obtained an expression for
resummed leading logarithmic inclusive gluon observables
in a single nucleus in terms of the equivalent leading order
observable. Along the way, we presented a novel derivation
of the JIMWLK evolution equation. In this section, we will
extend our analysis to the case of nuclear collisions. We
will show that the leading logarithms of k� that arise in the
calculation of loop corrections to the single inclusive gluon

spectrum can be factored out in the distributions W½ ~Aþ
1 �

and W½ ~A�
2 � that describe the two incoming nuclei. This

result will complete a proof of factorization of leading
logarithms of 1=x1;2 for inclusive observables in nucleus-

nucleus collisions.

A. Inclusive observables at leading order

As in the single nucleus case, our discussion is valid for
an inclusive multigluon operator O (corresponding to a
moment of the multiplicity or energy distribution produced
in nucleus-nucleus collisions), but for simplicity, we will
focus on the first moment of the multiplicity distribution—
the inclusive gluon spectrum. As we discussed in [24,26],
the inclusive single particle spectrum in nucleus-nucleus
collisions can be expressed as

Ep

dN

d3p
¼ 1

16�3
lim

x0!þ1

Z
d3xd3yeip�ðx�yÞð@0x � iEpÞ

� ð@0y þ iEpÞ
X
	



�
	 ðpÞ
�	ðpÞhA�ðxÞA�ðyÞi: (111)

Unsurprisingly, the operator hA�ðxÞA�ðyÞi is identical to

what we considered previously in the single nucleus case.
In particular, at leading order, the single gluon spectrum is
evaluated by replacing the two gauge operators in the right-
hand side of the previous equation by classical solutions of
the Yang-Mills equations. These classical solutions are
obtained by imposing retarded boundary conditions that
vanish in the remote past. The only difference with the
previous section and with Eqs. (13) is that the current J�

that drives the solutions of the Yang-Mills equations is now
comprised of two contributions corresponding to each of
the nuclei. This is a significant complication in that, unlike
the single nucleus case, analytical solutions do not exist.
However, the classical fields and the inclusive spectrum
have been computed numerically [56–64].
Formally, the single inclusive gluon spectrum at leading

order is a functional of the LC gauge fieldsA1;2 of the two

nuclei on the surfaces x� ¼ 
 and xþ ¼ 
, respectively, or

of the covariant gauge fields ~A�
1;2 in the strips 0 	 x� < 


and 0 	 xþ < 
 (see Fig. 8),

Ep

dN

d3p

								LO
� OLO½A1;A2� � OLO½ ~Aþ

1 ;
~A�

2 �: (112)

x
-  =

 ε

FIG. 6 (color online). Example of the term obtained when the
derivatives inH ðy2Þ can act on the coefficients ofH ðy1Þ. Here,
one of the derivatives inH ðy2Þ acts of the function  ofH ðy1Þ,
and the second derivative in H ðy2Þ acts on OLO.

x
-  =

 ε
x
-  =

 ε

FIG. 7 (color online). Some of the 2-loop corrections to the
observable O that do not appear at leading log.

O

βµ(u)

Σ

O

aµ
-k(u)

a ν
+k(v)

Σ

FIG. 8 (color online). NLO corrections in the collision of two
nuclei. The thick solid line is the initial surface where the
functions �� and a�k	a are evaluated. The precise shape of
the small portion of this surface located above the forward light
cone is not important because its contribution is power sup-
pressed.
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This quantity does not depend on the rapidity y�
lnðpþ=p�Þ because of the boost invariance of the classical
equations of motion [65–67].

B. One-loop corrections

At 1 loop, Eq. (16) can be used again to compute the
inclusive spectrum. The manipulations in Secs. II C and
II D were not specific to the case of a single nucleus.
Indeed, we did not specify the detailed content of the
current J� in Sec. II. The only requirement for the validity
of the final formula is that one chooses an initial surface �
which is locally spacelike (or lightlike at worst).

We can now exploit this freedom in the choice of � in
order to take a surface that treats the two nuclei on the same
footing. A convenient choice is a surface � with the two
branches

x� ¼ 
; xþ < 
;

xþ ¼ 
; x� < 
;
(113)

as illustrated by the thick solid line in Fig. 8. We shall
denote the measure on this initial surface as d�u. It is
simply duþd2u? on the first branch and du�d2u ? on the
second branch. Similarly, the definition of the operator ½a �
Tu� depends on the branch on which it is evaluated, be-
cause Green’s formula for the classical fields depends on a
different set of initial field components on the two
branches.27 It is also important to note that the functional
derivatives with respect to the initial gauge fields are
derivatives with respect to the fieldA1 of the first nucleus
on the first branch, and likewise the fieldA2 of the second
nucleus on the second branch.

We also need to say a few words about the gauge in
which the initial fields on � are expressed. On the left
branch of � (i.e. on the branch u� ¼ 
), we use the Aþ ¼
0 gauge, while we use the A� ¼ 0 gauge on the other
branch. Using different gauge conditions on these two
branches is possible because they are not causally con-
nected. Similarly, for the propagation of the small fluctua-
tions a�k	a and �, we use the Aþ ¼ 0 gauge if their
endpoint is on the left branch of �, and the A� ¼ 0 gauge
if it is on the other side.

Modulo these obvious changes, Eq. (40) is valid in the
case of two nuclei, and we can now express it as

ONLO ¼
�Z

�
d�u½� � Tu

�
þ 1

2

X
	;a

Z d3k

ð2�Þ32Ek

�
Z
�
d�ud�v½a�k	a � Tu�½aþk	a � Tu��

�OLO½A1;A2� þ �ONLO: (114)

The first two terms in this formula are illustrated in Fig. 8.

As in the case of a single nucleus, the leading logs will
cancel in �ONLO because of the charge conjugation sym-
metry discussed previously.
The leading log piece of the term involving ½� � Tu� can

be mapped into the corresponding term of the JIMWLK
equation in the same way as in the case of a single nucleus.
Depending on whether we are on the first or second branch
of the initial surface �, we get two terms which can be
expressed together as

�
ln

�
�þ

pþ

�Z
d2x?�b

1ðx?Þ
�

� ~Aþ
1;bð
Y; x?Þ

þ ln

�
��

p�

�

�
Z

d2x?�b
2ðx?Þ

�

� ~A�
2;bð
Y; x?Þ

�
OLO½ ~Aþ

1 ;
~A�

2 �;

(115)

where �b
1;2ðx?Þ are, respectively, the one-point functions

from the JIMWLK Hamiltonian for the two nuclei, and

likewise, ~Aþ
1 ;

~A�
2 are classical gauge fields in Lorenz

gauge of the first and second nuclei, respectively. We have
also introduced a cutoff�� that separates the color sources
of the second nucleus from the dynamical fields.
There is a subtlety in generalizing the single nucleus

derivation to obtain this result. In Eq. (73), the integration
over uþ runs from�1 toþ1. Now, because of the choice
of the surface �, this integration runs only from �1 to 0,
and we must justify that this difference is irrelevant. To
simplify the notations in this argument, let us use the
shorthand �ðuþ; u?Þ � @�ð�ðuÞA�ðuþ; u?ÞÞ. In our

problem, the functional derivative with respect to
�ðuþ; u?Þ is only applied to functionals that depend solely
on the uþ-independent mode of �ðuþ; u?Þ,

�ðu?Þ � 1

L

Z
duþ�ðuþ; u?Þ; (116)

where L is the length of the uþ interval.28 When this is the
case, we have

�

��ðuþ; u?ÞF½�ðu?Þ� ¼
1

L

�

��ðu?ÞF½�ðu?Þ�: (117)

Moreover, the result of this differentiation does not depend
on the value of uþ in the l.h.s. Therefore, the subsequent
integration over uþ merely generates a factor L equal to the
length of the integration range. We have therefore proven
that

Z
duþ

�

��ðuþ;u?ÞF½�ðu?Þ� ¼
�

��ðu?ÞF½�ðu?Þ�;
(118)

regardless of the integration range for the variable uþ.

27This result is evident from the derivation of Green’s formula
in LC gauge discussed at length in Appendix B.

28Since here this interval is semi-infinite, it is best to consider
uþ 2 ½�L; 0� in all the intermediate steps, and to take L! 1
only at the end.
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Another possible concern is whether there is a contribu-
tion to ½� � Tu� from the small portion of the initial surface
� that lies above the forward light cone in the region where
both u� are positive. It is easy to convince oneself that the
contribution from this region does not lead to stronger
singularities than the rest of the initial surface.
Furthermore, contributions from this region are phase-
space suppressed due to its small size of order 
.

The leading log contribution of the terms of Eq. (114)
that are bilinear in ½a � T� is equally simple when the two
points u and v belong to the same branch of the initial
surface �. If this is so, it is straightforward to reproduce
what we did for a single nucleus, and we find the two
separate contributions

�
ln

�
�þ

pþ

�Z
d2x?d2y?bc

1 ðx?; y?Þ

� �2

� ~Aþ
1;bð
Y; x?Þ� ~Aþ

1;cð
Y; y?Þ
þ ln

�
��

p�

�

�
Z

d2x?d2y?bc
2 ðx?; y?Þ

� �2

� ~A�
2;bð
Y; x?Þ� ~A�

2;cð
Y; y?Þ
�
OLO½ ~A�

1;2�: (119)

Summing Eqs. (115) and (119), and expressing � in terms
of , we obtain the leading log 1-loop expression for the
single inclusive gluon spectrum to be

O NLO ¼
LLog

�
ln

�
�þ

pþ

�
H 1 þ ln

�
��

p�

�
H 2

�
OLO½ ~Aþ

1 ;
~A�

2 �;
(120)

whereH 1;2 are the JIMWLK Hamiltonians of the first and

second nuclei, respectively. This equation—assuming we
can prove that there are no other terms at leading log—is
the generalization of Eq. (96) to the case of the collision of
two nuclei. In the next subsection, we will demonstrate that
indeed there are no other contributions.

C. Absence of precollision mixings

Thus far, we did not discuss the contribution to the
bilinear ½a � T� terms where the coordinates u and v belong
to different branches of the initial surface. This contribu-
tion is illustrated in Fig. 9. If it contains leading log con-
tributions, such a term would spoil Eq. (120), because it
would generate a term that mixes derivatives with respect

to ~Aþ
1 and ~A�

2 , thereby precluding any possibility of
factorization.

Fortunately, this possibility is not realized because terms
where u and v are on different branches contain the phases

eik
þðu��v�Þeik�ðuþ�vþÞ (121)

in the integral over d3k. For generic points u and v in this
configuration, neither u� � v� nor uþ � vþ are vanishing

and these exponentials oscillate rapidly when either kþ !
þ1 or k� ! þ1. Therefore, the integral over kþ (or k�)
is completely finite, and we do not get a large logarithm
from this configuration of u’s and v’s.
The only potential danger might come from the configu-

ration where u or v (or both) lies in the small portion of �
above the tip of the light cone. Again, such a configuration
can, at most, produce a logarithmic singularity, but is sup-
pressed by a small phase-space prefactor of order 
 due to
the small size of this region. Therefore, Eq. (120) contains
all the leading log terms that show up in the 1-loop cor-
rections to the single inclusive gluon spectrum.

D. Factorization

Finally, integrating over all the configurations of the

nuclear fields ~A�
1;2 with weights W½ ~Aþ

1 � and W½ ~A�
2 �,

and using the fact that the JIMWLK Hamiltonian is
Hermitian, we can write the sum of the LO and NLO
(leading logs only) of the single inclusive gluon spectrum
as

hOLO þONLOi ¼
LLog

Z
½D ~Aþ

1 �½D ~A�
2 �

� f½1þ �Y1H 1�W½ ~Aþ
1 �g

� f½1þ �Y2H 2�W½ ~A�
2 �g

�OLO½ ~Aþ
1 ;

~A�
2 �: (122)

In this equation, we denote �Y1 � lnð�þ1 =pþÞ and �Y2 �
lnð��2 =p�Þ, where�þ is the cutoff in the CGC description
of the first nucleus, �� of the second nucleus, and p� the
longitudinal momentum components of the produced
gluon. We can now choose the (arbitrary) cutoffs as �� ¼
p� and express, as anticipated in Eq. (10), the leading log
part of the NLO result in terms of the LO operator con-
voluted with the appropriately evolved weight functions as

hOiLLog ¼
Z
½D ~Aþ

1 �

� ½D ~A�
2 �WY1

½ ~Aþ
1 �WY2

½ ~A�
2 �OLO½ ~Aþ

1 ;
~A�

2 �;
(123)

O

aµ
-k(u) a ν

+k(v)

Σ

FIG. 9 (color online). Contribution that mixes the two nuclei
and may lead to a violation of factorization.
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where each of the W½ ~A��’s obeys the JIMWLK equation
(possibly with different initial conditions if the two nuclei
are not identical) and Y1 ¼ lnðPþ1 =pþÞ and Y2 ¼
lnðP�2 =p�Þ.

V. HIGH ENERGY FACTORIZATION RESULT IN
CONTEXT

It is useful to consider our result in Eq. (123) in the
context of related work in the high energy limit.
Factorization, in the specific sense of our work, was proven
previously for proton-nucleus collisions in the large Nc

limit of dipole scattering off a large nucleus [68–71]. In
the case of nucleus-nucleus collisions, there has been
recent work by Braun, computing single and double in-
clusive gluon production in a Reggeon field theory ap-
proach [72]. At present, it is unclear how to relate these
results to the JIMWLK evolution. A first attempt at estab-
lishing such a dictionary between cut disconnected dia-
grams in the CGC effective theory and cut Pomerons was
discussed in Ref. [23]; see also Refs. [73,74].

It is important to note that the factorization theorem
proven here is valid only for inclusive quantities such as
moments of the multiplicity or energy distributions. In fact,
it seems unlikely that these results will extend to discus-
sions of total cross sections and exclusive final states [75–
77]. Indeed, it is known [24,50] that the retarded nature of
the boundary conditions for the fields and field fluctuations
has a close connection with the inclusiveness of an observ-
able, and we have seen in the present paper that the
retarded nature of these objects plays an essential role in
our proof of factorization. Whether the Pomeron loops that
may play a role in those computations are suppressed for
the observables we consider is also unclear. Our results
certainly suggest that these contributions are not important
for inclusive moments in nucleus-nucleus collisions, pro-
vided the densities �1;2 of color sources are large.

29

Another important trend in the literature is computing
next-to-leading order contributions to high energy evolu-
tion. In the Reggeon field theory approach [78], we note the
very significant work on multi-Regge factorization at NLO
by Fadin and collaborators [79] which builds on the ex-
tension of the Balitsky-Fadin-Kuraev-Lipatov equation to
NLO [80–82]. In the CGC effective theory, there has been
significant recent work to include running coupling cor-
rections [31,33–37] culminating in the recent NLO exten-
sion [32] of the Balitsky-Kovchegov equation. As our
result is valid for JIMWLK factorization at leading log,
these NLO results will be useful in attempts to extend our

proof of high energy factorization to next-to-leading loga-
rithmic accuracy.
Finally, we should emphasize that JIMWLK factoriza-

tion proven here is far more general than the k? factoriza-
tion often discussed in the literature. The latter is a high
energy factorization in terms of unintegrated k?-dependent
parton distributions [83–85] and can be obtained in the low
density limit of JIMWLK factorization [23,86,87]. In order
to see this explicitly, one should take the limit of low gluon

density in the observableOLO½ ~Aþ
1 ;

~A�
2 � that enters in the

integrand of our factorized formula (123). Formally, this
amounts to letting the source densities �1;2 tend to zero and

keeping only the first nonzero contribution. In the particu-
lar case where the observable is the single inclusive gluon
spectrum, the lowest order term is of order �2

1�
2
2. The

integral of �2
1 over ~Aþ

1 weighted by the distribution

WY1
½ ~Aþ

1 � gives the nonintegrated gluon distribution of

the first nucleus, evolved to the rapidity of the produced
gluon—and likewise for the second nucleus. If one also
takes the limit of low density in the JIMWLK equation that
drives the evolution of the distributions WY1;2

, these non-

integrated gluon distributions will obey the Balitsky-
Fadin-Kuraev-Lipatov equation, and one will automati-
cally recover the usual k?-factorization result for single
gluon production in the low density regime. k? factoriza-
tion also holds for single inclusive gluon production at
leading order in proton-nucleus collisions [68,86,88–
92]—i.e. when one takes the low density limit only for
one of the two nuclei. From this way of recovering the
known k?-factorized results as limits of our Eq. (123), it
should be obvious that JIMWLK factorization is far more
general and robust than k? factorization, since it contains
the latter and remains valid in the description of the colli-
sion of two dense projectiles.
k? factorization was, however, shown to be broken

explicitly for quark pair production even at leading order
[87], albeit it is restored [23] for large momenta k? � Qs.
Likewise, this breaking of factorization is also seen for
gluon pair production [69,93]. In a subsequent work [27],
we have proven that the JIMWLK factorization formula
(123) is also valid in the case of the multigluon inclusive
spectra, provided all the measured gluons are in a small
window in rapidity. Some work is under way in order to
extend this result to the general case of gluons located at
arbitrary rapidities.
To a large extent, factorization in hadronic collisions is

merely a consequence of causality: two fast projectiles
cannot interact before they collide. Thus the objects that
describe their content must be universal—independent of
the other projectile, and of the observable that one is going
to measure after the collision. However, this general argu-
ment does not tell us what information should be included
in the objects describing the projectiles; indeed, this de-
pends on the observable under consideration, and on
whether we are in the saturation regime or not. In the

29If �1;2 are not of order g
�1, then the power counting on which

our considerations are based may be modified. Since it has been
argued that Pomeron loops play a role in the dilute regime, this
leaves open the possibility that these effects may alter our
conclusions close to the fragmentation region of the projectiles.
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saturated regime, a given observable will generally be
produced via the coherent interaction of many partons of
the projectiles, which means that one will need to know the
probability of these multiparton configurations in the wave
function of the projectiles. In contrast, in the dilute regime,
since only one parton of each projectile interacts, one
needs only to know the probabilities for 1-parton configu-
rations. This is why JIMWLK factorization is more general
than k? factorization: the distribution W½�� contains
enough information30 to calculate the nonintegrated gluon
distribution, but the converse is certainly not true.31 Similar
considerations suggest that JIMWLK factorization may
not work in the case of exclusive observables. Indeed,
inclusive observables usually require less detailed infor-
mation about the projectiles than exclusive ones.32

The factorization theorem that we have proved here is a
necessary first step before a full NLO computation of gluon
production in the Glasma. Equation (123) includes only the
NLO terms that are enhanced by a large logarithm of
1=x1;2, while the complete NLO calculation would also

include the nonenhanced terms. This would be of the same
order in �s as the production of quark-antiquark pairs
[94,95] from the classical field. Note that, to be really
useful, this complete NLO calculation would probably
have to be promoted to a next-to-leading log result by
resumming all the terms in �sð�s lnð1=x1;2Þn. Now that

evolution equations in the dense regime are becoming
available at NLO, work in this direction is a promising
prospect.

VI. FACTORIZATION, THE GLASMA, AND
THERMALIZATION

The Glasma is the nonequilibrium hot and dense matter
formed immediately in the aftermath of a high energy
heavy ion collision [25,46,96]. How this matter thermal-
izes is of great importance for a quantitative understanding
of the phenomenology of heavy ion collisions.33 We will
discuss here the relevance of our factorization theorem,
present qualitative ideas about its generalization, and dis-
cuss their importance in quantifying the properties of the
Glasma.

At leading order, the Glasma is described by the solution
of the Yang-Mills equations in the forward light cone with
retarded boundary conditions (given by the classical fields
of the two nuclei before the collision). The produced fields
have large occupation numbers of order ��1s and are boost
invariant [65,66]. This boost invariance of fields implies
that the classical dynamics can be described by the proper
time evolution of gauge fields that live in the transverse
plane. An interesting consequence of the classical field
dynamics is that the chromo-electric and magnetic fields
are purely longitudinal after the collision [46,65], leading
to the generation of Chern-Simons charge density in the
collision [96]. The Glasma fields at this order generate only
transverse pressure at proper times � * Q�1s , so it seems
impossible that a treatment of the Glasma at this order
leads to thermalization.
This is where the small quantum fluctuations of the color

field (of order 1, compared to the classical field of order
g�1) become relevant. In an observable such as the inclu-
sive gluon spectrum, these quantum fluctuations lead to
corrections that are �s smaller than the leading order
classical contribution. As we have discussed at length in
the previous sections, some contributions of these small
fluctuations—those that are enhanced by leading powers of
lnð1=x1;2Þ—can be resummed and absorbed into universal

distributions W½�� that describe the high energy evolution
of the nuclear wave functions.
But what about the remaining part of these small fluc-

tuation terms, that are purely of order �s relative to the
classical fields? Our resummation of leading logs corre-
sponds to a well-controlled approximation provided the
coefficients dni in the expansion of Eqs. (5) and (8) are
truly numbers of order unity. Indeed, we have disregarded
thus far the terms dni for i < n, on the basis that they do not
have as many logs as powers of �s. However, numerical
simulations of the classical Yang-Mills equations with
initial conditions that break boost invariance show the
existence of an instability of the rapidity-dependent fluc-
tuations [97–99]. In these simulations, it is observed that
the small rapidity-dependent perturbations superimposed
to the boost invariant classical field grow exponentially
with the square root of time as34

a� � e
ffiffiffiffiffi
��
p

; (124)

where � is a quantity of the order of Qs (its precise value
depends on the wavelength of the fluctuation in the rapidity
direction). This growth has variously been interpreted as
either a Weibel-type [98,100] or Nielsen-Olesen-type
[101,102] instability. The former mechanism, in particular,
has been discussed extensively as a possible mechanism
for thermalization in heavy ion collisions [103–110]. The

30It provides information about multiparton correlations such as
h�ðx1Þ�ðx2Þ � � ��ðxnÞi.
31Nonintegrated gluon distributions depend only on 2-parton
correlations h�ðx1Þ�ðx2Þi.
32For instance, in order to study single diffractive processes,
one would need ‘‘conditional’’ probabilities of multiparton con-
figurations, where one imposes the condition that no parton has
been radiated between the rapidity of the projectile and the
rapidity where the gap ends. This information is not provided
by the distributions W½�� that are the basis of JIMWLK
factorization.
33Another important aspect is how jets propagate inside this
matter, in order to assess issues such as leading parton quenching
in jets.

34The fact that the square root of the proper time, rather than
the proper time itself, controls the growth of the instability is due
to the longitudinal expansion of the system. This has also been
observed analytically in the study of the Weibel instability [100].
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existence of these unstable modes suggests that our as-
sumption that the coefficients dni for i < n are of order
unity is incorrect.

Our present understanding is that there are three classes
among the small field fluctuations, which can be organized
according to the momentum p they have in the  direc-

tion:
(i) Zero modes (p ¼ 0) that generate a leading log.

That the leading logs come solely from zero modes is
obvious from the fact that the coefficients of the
leading logs do not depend on x�. These terms are
already included in the resummation we have dis-
cussed at length in this paper.

(ii) Zero modes that do not contribute at leading log
because they have an extra power of k� that prevents
the divergence when kþ ! 1 (see the discussion in
Sec. III D). These terms have not been resummed in
our scheme, and they do not seem to trigger the
instability either. They would only become relevant
in a full NLO calculation, and in resummation of
next-to-leading log terms [32].

(iii) Nonzero modes (p � 0). These terms do not con-
tribute large logarithms of 1=x1;2, but they are un-

stable and grow exponentially as expð ffiffiffiffiffiffiffi
��
p Þ.

It is the latter boost noninvariant terms that are potentially
dangerous. While also suppressed by a power of �s, they
can be enhanced by exponentials of the proper time after
the collision. Terms that diverge with time are called
‘‘secular divergences,’’ and some techniques for resum-
ming these divergences are well known35 in the literature
[38].

Based on the above considerations, let us refine the
expansion we wrote in Eqs. (5) and (8), in order to keep
track also of powers of expð ffiffiffiffiffiffiffi

��
p Þ. We should now write

O ½�1; �2� ¼ 1

g2
½c0 þ c1g

2 þ c2g
4 þ � � ��; (125)

with

cn �
Xn
p¼i

Xp
i¼0

fnpie
ðp�iÞ ffiffiffiffiffi��

p
lni

�
1

x1;2

�
: (126)

In other words, the coefficients dni that we have introduced
in Eq. (8), and assumed to be of order unity, are in fact

dni ¼
Xn
p¼i

fnpie
ðp�iÞ ffiffiffiffiffi��

p
; (127)

and can thus grow exponentially in time after the collision.
In Eq. (126), the sum of the number of logs and of factors
expð ffiffiffiffiffiffiffi

��
p Þ (this sum is the index p) cannot exceed n at n

loops. This is because a fluctuation mode cannot be at the

same time a zero mode (required to generate a log) and a
nonzero mode (required to generate an instability). In this
new language, the leading log resummation that we have
performed so far amounts to keeping only the term fnnn in
every cn.
At first sight, one may expect a complete breakdown of

the leading log description when the time

�max �Q�1s ln2
�
1

�s

�
(128)

is reached. This is the time at which 1-loop corrections
become as large as the LO contribution. This conclusion
can be avoided if one can resum these divergent contribu-
tions leading to a resummed result that is better behaved
for �! þ1. Indeed, it is possible to improve upon the
leading log approximation, by keeping at every loop order
all the terms where p ¼ n: this corresponds to all the terms
where every power of �s is accompanied by either a log or
an expð ffiffiffiffiffiffiffi

��
p Þ. Thus, let us define

O LLogþLInst½�1; �2� � 1

g2

� X1
n¼0

g2n
Xn
i¼0

fnnie
ðn�iÞ ffiffiffiffiffi��

p
lni

�
1

x1;2

�
:

(129)

The subscript ‘‘LInst’’ means ‘‘leading instability.’’
In the formalism we have developed in this paper, the

growth of small fluctuations with time can be traced to the
action of the linear operator in Eq. (114) on the classical
field. The quantity

T uAðxÞ � �AðxÞ
�AðuÞ � e

ffiffiffiffiffi
��
p

(130)

is a measure of how sensitive the classical field AðxÞ is to
the initial condition at the point u on the initial surface. If
there is an instability, small perturbations of the initial
conditions lead to exponentially large deviations in the
classical solutions. We will assume for now that the im-
proved resummation defined in Eq. (129) can be performed
and leads to

O LLogþLInst ¼ Z½Tu�OLLog½A�; (131)

where Z½Tu� is a certain functional of the operator Tu. In
the r.h.s. we have emphasized the dependence of the ob-
servable on the initial value of the gauge field. This for-
mula can be expressed more intuitively by performing a
Laplace transform of Z½Tu� which reads

Z½Tu� �
Z
½Dað ~uÞ�e

R
�
d3 ~u½a�Tu� ~Z½að ~uÞ�: (132)

Given the structure of a � Tu in Eq. (42), the functional
integration ½Dað ~uÞ� is an integration over the initial fluc-
tuation a�ð ~uÞ itself and over some of its first derivatives.
Because Tu is the generator of translations of the initial

35Indeed, one can think of the Boltzmann equation as an
equation that effectively resums a certain class of secular
divergences.
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conditions on the light cone, the exponential in the pre-
vious formula is the translation operator itself. When this
exponential acts on a functional of the initial classical field
A, it gives the same functional evaluated with a shifted
initial condition Aþ a. Therefore, we can write

O LLogþLInst ¼
Z
½Dað ~uÞ� ~Z½að ~uÞ�OLLog½Aþ a�: (133)

The effect of the resummation is simply to add fluctuations
to the initial conditions of the classical field, with a distri-
bution that depends on the outcome of the resummation.36

The resummation lifts the limited applicability of the CGC
approach implied by Eq. (128). Indeed, after the resumma-
tion, the fluctuation aðuÞ enters only in the initial condition
for the full Yang-Mills equations whose nonlinearities
prevent the solution from blowing up. Combining our
factorization formula in Eq. (123) with the conjectured
result of the resummation of the leading instabilities, one
obtains a generalization of Eq. (123) which reads

hOiLLogþLInst ¼
Z
½D ~Aþ

1 �½D ~A�
2 �WY1

½ ~Aþ
1 �WY2

½ ~A�
2 �

�
Z
½Dað ~uÞ� ~Z½að ~uÞ�

�OLO½ ~Aþ
1 þ a; ~A�

2 þ a�: (134)

This formula resums the most singular terms at each
order in �s. In comparison to the physics of the initial and
final states, respectively, in the collinear factorization
framework, the distributions W½�� are analogous to parton
distributions while ~Z½a� plays a role similar to that of a
fragmentation function.37 To prove Eq. (134), and to ex-
tract the spectrum of fluctuations, one needs to compute the
behavior of fluctuations on the forward light-cone wedge at
x
 ¼ 
, x� ! þ1.

Even after the resummations are performed in the initial
and final states, Eq. (134) still suffers from the usual
problem of collinear gluon splitting in the final state [36].
This, however, is not a serious concern in heavy ion
collisions because collinear singularities occur only when
one takes the �! þ1 limit. In practice, we expect to have
switched to a more efficient description like kinetic theory
or hydrodynamics long before this becomes a problem.
Indeed, the initial condition for hydrodynamics, which is
specified in terms of the energy-momentum tensor T��, is
free of any infrared and collinear divergences because it
measures only the density and flow of energy and momen-
tum. It is straightforward to reexpress our results for multi-
plicity moments in terms of T��.

A far more challenging problem, that has still not re-
ceived a satisfactory answer, is to understand how the
initial particle spectrum—or the local energy-momentum
tensor—becomes isotropic and perhaps even thermal.
Indeed, a very important question is whether this improved
resummation, that includes the leading unstable terms,
hastens the local thermalization of the system formed in
heavy ion collisions.

VII. SUMMARYAND OUTLOOK

In this paper, we have presented a novel derivation of the
JIMWLK equation. We showed that in this approach the
JIMWLK Hamiltonian can be determined entirely in terms
of retarded propagators with no ambiguities related to
light-cone pole prescriptions. Our approach generalizes
easily to the case of nucleus-nucleus collisions, and we
were able to derive the factorization formula in Eq. (123).
This formula is valid to all orders for leading logs in x and
to all orders in the color charge densities of the nuclei. For
this factorization to work, it appears crucial to consider an
observable that depends on a single rapidity, and that can
be expressed in terms of retarded fields. Since we had
previously linked retarded boundary conditions to the in-
clusiveness of an observable, this emphasizes the impor-
tance of inclusiveness for factorization, and the difficulties
one may expect when considering exclusive observables.
In view of this, it seems interesting to study whether the

factorization theorem proved here can be extended to less
inclusive quantities. One such example is the production of
two jets that are separated in rapidity by �Y � 1=�s. In
particular, can the evolution between the jets be factorized
from JIMWLK evolution of the wave functions as in the
case of inclusive gluon production? Answers to these
questions will be of great importance in assessing whether
the early time dynamics in heavy ion collisions leaves an
imprint in the long range rapidity correlations at later
stages.
We further conjectured the existence of the generalized

factorization formula in Eq. (134). This expression also
resums the leading exponentials in time arising from the
instability of the classical fields to quantum fluctuations on
the initial light-cone surface. The resulting spectrum of
fluctuations is very important for determining the subse-
quent thermalization of the Glasma. Work in this direction
is in progress.
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APPENDIX A: GLUON PROPAGATOR IN LC
GAUGE

Consider the QCD Lagrangian to which we add a gauge
fixing term proportional to ð~n � AÞ2,

L � � 1

4
Fa
��F

��
a þ 1

2�
ð~n � AÞ2: (A1)

We are mostly interested in the case where ~n � A ¼ Aþ, but
in fact most of the discussion is valid for any vector ~n�. In
order to determine the free propagator in this gauge, we
need first to isolate the quadratic part of the Lagrangian,

L quad ¼ 1

2
Aa
�

�
hg�� � @�@� þ 1

�
~n�~n�

�
Aa
�: (A2)

The free propagator we are looking for is a Green’s func-
tion of the operator in the square brackets. Its calculation is
best performed in momentum space, where we need to
invert

� g��k2 þ k�k� þ 1

�
~n�~n�: (A3)

Because this tensor is symmetric in ð�;�Þ, its inverse must
be a linear combination of g��, k�k�, ~n�~n�, and k�~n� þ
k�~n�. Writing the most general linear combination of these
elementary tensors, and multiplying it by Eq. (A3), we
finally obtain the following expression for the propagator
in momentum space:

D
��
0 ðkÞ ¼ �

g��

k2
þ k�k�

ð~n � kÞ2
�
�� ~n2

k2

�
þ k�~n� þ k�~n�

k2ð~n � kÞ :

(A4)

Note that this expression is still incomplete, because we
need to add i
’s to the denominators in order to make the
propagator regular on the real energy axis. Doing so
amounts to choosing certain boundary conditions for the
fields that evolve according to this propagator. In this
paper, the central object is the retarded propagator, which
has all its poles below the real energy axis. This amounts to
writing

D
��
0;R
ðkÞ ¼ � g��

k2 þ ik0

þ k�k�

ð~n � kþ i
Þ2
�
�� ~n2

k2 þ ik0


�

þ k�~n� þ k�~n�

ðk2 þ ik0
Þð~n � kþ i
Þ : (A5)

(Our choice for the i
 prescription of the ~n � k denomina-
tors is indeed retarded if n0 > 0. We will assume that this is
the case.)

In the case of the light-cone gauge Aþ ¼ 0, this amounts
to choosing a vector ~n� that has ~n� ¼ 1 and all its other

components zero. Moreover, we work in the ‘‘strict’’ light-
cone gauge, which corresponds to the limit �! 0 for the
gauge fixing parameter. The propagator simplifies some-
what in this particular case:

D��
0;R
ðkÞ ¼ � 1

k2 þ ik0


�
g�� � k�~n� þ k�~n�

~n � kþ i


�
: (A6)

Note that this propagator is zero if any of its Lorentz
indices is equal to þ.

APPENDIX B: GREEN’S FORMULA IN LC GAUGE

An essential ingredient in our discussion is the Green’s
formula that expresses a field fluctuation in terms of its
value on some initial surface. In this appendix, this initial
surface will be the lightlike plane defined by x� ¼ 0, but
our derivation is more general than that and applies to any
initial surface.

1. Green’s formula for a small fluctuation
in the vacuum

Consider first a small field fluctuation a� propagating in
the vacuum. In the strict light-cone gauge, it obeys

aþðyÞ ¼ 0; ½hyg
�� � @�y @�y �a�ðyÞ ¼ 0: (B1)

Recall also that the free propagator D
��
0;R
ðx; yÞ obeys

D�
�0;R
ðx; yÞ½h yg

�� � @�y @�y
 
� ¼ g���ðx� yÞ; (B2)

where the arrows indicate that the derivatives act on the
left. Now, multiply Eq. (B1) by D��

0;R
ðx; yÞ on the left,

Eq. (B2) by a�ðyÞ on the right, integrate y over all the
domain defined by y� > 0, and subtract the two equations.
One obtains

a�ðxÞ ¼
Z
y�>0

d4yD�
�0;R
ðx; yÞ½@�y @�y

$
�h
$

yg
���a�ðyÞ;

(B3)

where A
$ � ~A� A

 
. Using the relations

Ah
$
B ¼ @�½A@$�B�;

A@�@�
$

B ¼ 1
2@

�½A@$�
B� þ 1

2@
�½A@$�

B�;
(B4)

we see that the integrand in Eq. (B3) is a total derivative.
Therefore, we can rewrite this integral as an integral on the
boundary of the integration domain. If the derivative we
integrate by parts is a @i or @�, then the corresponding
boundary is located at infinity in the direction yi or yþ,
respectively. We will assume that the field fluctuation
under consideration has a compact enough support so
that these contributions vanish. We are thus left with the
terms coming from the derivative @þ. The contribution
from the boundary at y� ¼ þ1 is zero, because of our
choice of the retarded prescription for the propagator.
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Therefore, the only contribution is from the boundary at
y� ¼ 0,

a�ðxÞ ¼
Z
y�¼0

dyþd2y?D�
�0;R
ðx; yÞ

�
g��ðn � @$Þ

� 1

2
ðn�@$�

y þ n�@
$�

y Þ
�
a�ðyÞ; (B5)

where n� is a vector such that n � A ¼ A� (it is the unit
vector normal to the surface y� ¼ 0). This formula indi-
cates how the value of the fluctuation at the point x is
related to its value on an initial surface located at y� ¼ 0.
(Note that this dependence is linear since small fluctuations
obey a linear equation of motion.) A priori, it involves the
values of all the components of the fluctuation on this
surface, as well as that of its first derivatives. However,
some of this information is not necessary because the
propagator vanishes when � ¼ þ and because of the
gauge condition aþðyÞ ¼ 0. If one eliminates from the
previous formula all the terms that are obviously zero
and integrates some terms by parts,38 we get a�ðxÞ �
B�

0 ½a�ðxÞ, where B�
0 ½a�ðxÞ is an integral that depends

only on the value of the field and of some of its derivatives
on the initial surface,

B �
0 ½a�ðxÞ ¼

Z
y�¼0

dyþd2y?f½@y�D��
0;R
ðx; yÞ�a�ðyÞ

�D
��
0;R
ðx; yÞ½@�y a�ðyÞ�

�D
�i
0;R
ðx; yÞ2@�y aiðyÞg: (B6)

Therefore, it appears that in the light-cone gauge Aþ ¼ 0,
and for an initial surface x� ¼ 0, we need to know the
initial value of a�; @�ai and @�a

� in order to fully deter-

mine the value of the fluctuation at the point x. This fact is
the reason why there are only three terms in the definition
of the operator Tu in Eq. (42) (but we postpone until the
end of this section the explanation of why one needs to
include the Wilson line � in this definition).

Moreover, the first term in the right-hand side of
Eq. (B6) can be simplified considerably by using the ex-
plicit expression of the free propagators in light-cone
gauge:

@y�D
��
0;R
ðx; yÞ ¼ ����ðx� � y�Þ�ðxþ � yþÞ�ðx? � y?Þ:

(B7)

2. Green’s formula for classical solutions

There is also a similar Green’s formula for retarded
classical solutions of the Yang-Mills equations. Contrary
to the case of small fluctuations, we do not assume that the

gauge field is small, and we keep all the self-interactions as
well as the interactions with some external source.
Formally, we can write the Lagrangian as

L ¼ Lquad �UðAÞ; (B8)

where UðAÞ is a local polynomial of the gauge field. It
contains the 3- and 4-gluon couplings and the coupling to
the external source. In theAþ ¼ 0 gauge, the correspond-
ing classical equation of motion is

½hyg
�� � @

�
y @�y �A�ðyÞ ¼ @UðAÞ

@A�ðyÞ : (B9)

Then one can follow the same procedure as in the case of
small fluctuations, and we obtain

A �ðxÞ ¼
Z
y�>0

d4yD��
0;R
ðx; yÞ @UðAÞ

@A�ðyÞ þB�
0 ½A�ðxÞ:

(B10)

Of course, the dependence of the classical field on its initial
conditions is no longer linear because of the first term in
the right-hand side; the self-interactions of the gauge fields
lead to an involved dependence on the initial conditions.

3. Green’s formula for a� in a background field

Finally, the Green’s formula of Eq. (B6) can be extended
to the situation where the fluctuation a�ðxÞ propagates on
top of a classical background field A� rather than the
vacuum. The only change is that the free propagator must
be replaced by the propagator in a background field. The
property that its � ¼ þ Lorentz component vanishes re-
mains true, because it is a consequence of the choice of the
gauge. For such a fluctuation, there is also a Green’s
formula that uses only the free gauge propagator, and
where the interactions with the background field appear
explicitly as the additional term

a�ðxÞ ¼
Z
y�>0

d4yD��
0;R
ðx; yÞ @2UðAÞ

@A�ðyÞ@A�ðyÞa
�ðyÞ

þB�
0 ½a�ðxÞ: (B11)

The derivation of this formula is very similar to that for the
classical field A�. We can also rewrite it in a form very
similar to Eq. (B6), i.e. a�ðxÞ ¼ B½a�ðxÞ with

B�½a�ðxÞ ¼
Z
y�¼0

dyþd2y?f½@y�D��
R ðx; yÞ�a�ðyÞ

�D��
R ðx; yÞ½@�y a�ðyÞ�

�D�i
R ðx; yÞ2@�y aiðyÞg: (B12)

The boundary termB½a� differs fromB0½a� in the fact that
it contains the retarded propagator D��

R dressed by the
background field instead of the bare retarded propagator
D��

0;R
. A crucial difference between the dressed and bare

38The antisymmetric derivatives @
$�
y and @

$i

y can be eliminated
by integration by parts. This is not possible for @

$þ
y since the

boundary term does not contain an integral with respect to y�.
This is why we have a term involving the derivative @þy D

��
0;R

.
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propagators is that the simplification of Eq. (B7) does not
occur with the dressed propagator.

In the derivation of the JIMWLK equation, the fluctua-
tions a�ðxÞ one considers are fluctuations whose initial
conditions at x0 ! �1 are plane waves of momentum k.
One can calculate explicitly their value on the initial
surface, which means that we know analytically the quan-
tities a�, @�ai, and @�a

� in the r.h.s. of Eq. (B12). A

crucial property is that the initial values of a� and @�ai are
suppressed by an extra factor 1=kþ, and thus any term
containing them cannot have a logarithmic divergence
when kþ ! þ1. This argument is correct provided the
prefactors of these quantities in Eq. (B12) do not bring
factors of kþ. There is no problem with the second and
third terms, since their prefactors are just propagators.

However, the coefficient of the first term can be large
because it involves the derivative of the propagator. More
specifically, the problem comes from the @þy derivative,

which is large in the region where the y� dependence is
strong, where the boundary condition is set. There are two
ways to proceed: keep track separately of the first and
second terms of Eq. (B12), or try to combine them into a
unique term. The second option is the simplest in the case
where the propagator D

��
R is dressed by a pure gauge

background field: by rotating the fluctuation a� by the
Wilson line � that parametrizes the pure gauge back-
ground, a� ! �a�, we can rewrite the boundary term as

B�½a�ðxÞ ¼ �yðxÞ
Z
y�¼0

dyþd2y?f½@y�ðD��
0;R
ðx; yÞ�

��ðyÞa�ðyÞ �D��
0;R
ðx; yÞ½@�y �ðyÞa�ðyÞ�

�D�i
0;R
ðx; yÞ2@�y �ðyÞaiðyÞg; (B13)

where we have now only bare propagators. (To obtain this
expression, one should apply a gauge transformation �
that eliminates the background field, and perform the
inverse gauge transform at the endpoint x.) This is why
the most convenient definition of Tu in Eq. (42) involves
functional derivatives with respect to �a� rather than a�

itself.39 Note that for this discussion to hold, it is only
necessary that the background field is a pure gauge in the
vicinity above the initial surface, since the derivative is
with respect to a coordinate on this initial surface. Whether
the background field is a pure gauge everywhere above the
initial surface is not important.

APPENDIX C: TWO-DIMENSIONAL FREE
PROPAGATOR

In the derivation of the JIMWLK equation, one makes
use of several formulas involving the bare two-dimensional
propagators. These formulas are not new: all of them have
already been used in one form or another in previous
papers discussing the JIMWLK equation. We compile
them in this appendix, with their derivation, as a conve-
nient reference for the reader.
Let us denote Gðx? � y?Þ a Green’s function of the

two-dimensional Laplacian operator,

@ 2
?Gðx? � y?Þ ¼ �ðx? � y?Þ: (C1)

It admits a simple Fourier representation,

Gðx? � y?Þ ¼ �
Z d2k?
ð2�Þ2 e

ik?�ðx?�y?Þ 1

k2?
: (C2)

Note that this object suffers from an infrared problem,
which is obvious for dimensional reasons: this propagator
is a dimensionless object in coordinate space, invariant
under translations and rotations, and therefore it must be
a function of �jx? � y?j where � is some mass scale that
was not present in the previous equation.
Derivatives of this propagator do not suffer from this

infrared ambiguity. Consider, for instance,40

@ixGðx? � y?Þ ¼ i
Z d2k?
ð2�Þ2 e

ik?�ðx?�y?Þ k
i

k2?
: (C3)

From its symmetries and dimension, it is obvious that this
derivative can be written as

@ixGðx? � y?Þ ¼ C
xi? � y i

?
ðx? � y?Þ2

; (C4)

where the prefactor C is dimensionless. Because the de-
rivative of the propagator is not infrared singular, the cutoff
� cannot appear in its expression and C must be a pure
number (otherwise it would have to be a function of
�jx? � y?j to have the correct dimension). In order to
determine the constant, take another derivative @ix and
integrate over x? the resulting equation over some domain
� of the plane that contains the point y?. On the left-hand
side, we get the integral of a delta function since G is a
Green’s function of @2

?. We then get

1 ¼ C
Z
�
d2x?@ix

xi? � yi?
ðx? � y?Þ2

: (C5)

The right-hand side can be transformed by using the two-
dimensional Stokes theorem, leading to an integral on the
boundary of � (oriented counterclockwise),

39Of course, the two ways of defining Tu—with and without the
�—are exactly equivalent. But if we did not include the� in the
definition, the logarithmic divergences would come from a
combination of the second and third terms of Eq. (42), instead
of being limited to the third term if we include the � in the
definition of Tu.

40Let us recall that @ix ¼ @
@xi
¼ � @

@xi
.

HIGH ENERGY FACTORIZATION IN NUCLEUS-NUCLEUS . . . PHYSICAL REVIEW D 78, 054019 (2008)

054019-25



1 ¼ C
Z
@�


ijðxi? � yi?Þdxj
ðx? � y?Þ2

; (C6)

where 
ij is completely antisymmetric (
12 ¼ 1). The
contour integral in this equation is a topological quantity
that depends only on the winding number of the contour
@� around the point y?. Thus, it is best calculated by
deforming @� into the unit circle around the point y?. We
easily get

1 ¼ 2�C: (C7)

Thus we have

@ixGðx? � y?Þ ¼ 1

2�

xi? � yi?
ðx? � y?Þ2

: (C8)

The second derivative of the propagator is also useful in

the derivation of the JIMWLK equation. By applying @jx to
the previous equation, one obtains

@ix@
j
xGðx? � y?Þ ¼ 1

2�
@jx

xi? � yi?
ðx? � y?Þ2

¼ 1

2�ðx? � y?Þ2
�
�ij

� 2
ðxi? � yi?Þðxj? � yj?Þ

ðx? � y?Þ2
�
: (C9)

This formula, although perfectly correct for x? � y?, is
incorrect at the point x? ¼ y?. In order to see this, take the
trace over the indices i and j. In the left-hand side, we have
the Laplacian of the propagator, i.e. �ðx? � y?Þ, while the
right-hand side would give zero. Thus the full formula for
the second derivative is

@ix@
j
xGðx? � y?Þ ¼ �ij

2
�ðx? � y?Þ þ 1

2�
�ijðx? � y?Þ;

(C10)

with

�ijðx? � y?Þ � 1

ðx? � y?Þ2

�
�
�ij � 2

ðxi? � yi?Þðxj? � yj?Þ
ðx? � y?Þ2

�
:

(C11)

This function�ij obeys an interesting identity. By integrat-
ing by parts, one can check that

Z d2u?
ð2�Þ2

d2v?
ð2�Þ2

ðxi?�ui?Þðyj?�vj
?Þ

ðx?�u?Þ2ðy?�v?Þ2
@iu@

j
vGðu?�v?Þ

¼� 1

ð2�Þ2
Z d2u?
ð2�Þ2

ðxi?�ui?Þðyi?�ui?Þ
ðx?�u?Þ2ðy?�u?Þ2

¼�
Z d2u?
ð2�Þ2

d2v?
ð2�Þ2

ðxi?�ui?Þðyj?�vj
?Þ

ðx?�u?Þ2ðy?�v?Þ2
�ij�ðu?�v?Þ:

(C12)

Using now Eq. (C10), we obtain the following identity,

Z d2u?
ð2�Þ2

d2v?
ð2�Þ2

ðxi? � ui?Þðyj? � vj
?Þ

ðx? � u?Þ2ðy? � v?Þ2

�
�
�ij

2
�ðu? � v?Þ � 1

2�
�ijðu? � v?Þ

�
¼ 0:

(C13)

Let us also provide an alternate representation of the
two-dimensional propagator that is sometimes helpful. Let
us start with the integral

Z d2u?
ð2�Þ2

ui? � xi?
ðu? � x?Þ2

ui? � yi?
ðu? � y?Þ2

¼
Z

d2u?½@iuGðu? � x?Þ�½@iuGðu? � y?Þ�: (C14)

The integral in the right-hand side can be performed by
parts, since it leads to the Laplacian of a propagator, which
is a delta function. Thus, we obtain the identity

Gðx? � y?Þ ¼ �
Z d2u?
ð2�Þ2

ui? � xi?
ðu? � x?Þ2

ui? � yi?
ðu? � y?Þ2

:

(C15)

Note that the integral over u? suffers from the same
infrared problems that we have already mentioned at the
beginning of this appendix.
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