73 research outputs found

    Smoking status and anti-inflammatory macrophages in bronchoalveolar lavage and induced sputum in COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Macrophages have been implicated in the pathogenesis of COPD. M1 and M2 macrophages constitute subpopulations displaying pro- and anti-inflammatory properties. We hypothesized that smoking cessation affects macrophage heterogeneity in the lung of patients with COPD. Our aim was to study macrophage heterogeneity using the M2-marker CD163 and selected pro- and anti-inflammatory mediators in bronchoalveolar lavage (BAL) fluid and induced sputum from current smokers and ex-smokers with COPD.</p> <p>Methods</p> <p>114 COPD patients (72 current smokers; 42 ex-smokers, median smoking cessation 3.5 years) were studied cross-sectionally and underwent sputum induction (M/F 99/15, age 62 ± 8 [mean ± SD] years, 42 (31-55) [median (range)] packyears, post-bronchodilator FEV<sub>1 </sub>63 ± 9% predicted, no steroids past 6 months). BAL was collected from 71 patients. CD163<sup>+ </sup>macrophages were quantified in BAL and sputum cytospins. Pro- and anti-inflammatory mediators were measured in BAL and sputum supernatants.</p> <p>Results</p> <p>Ex-smokers with COPD had a higher percentage, but lower number of CD163<sup>+ </sup>macrophages in BAL than current smokers (83.5% and 68.0%, p = 0.04; 5.6 and 20.1 ×10<sup>4</sup>/ml, p = 0.001 respectively). The percentage CD163<sup>+ </sup>M2 macrophages was higher in BAL compared to sputum (74.0% and 30.3%, p < 0.001). BAL M-CSF levels were higher in smokers than ex-smokers (571 pg/ml and 150 pg/ml, p = 0.001) and correlated with the number of CD163<sup>+ </sup>BAL macrophages (Rs = 0.38, p = 0.003). No significant differences were found between smokers and ex-smokers in the levels of pro-inflammatory (IL-6 and IL-8), and anti-inflammatory (elafin, and Secretory Leukocyte Protease Inhibitor [SLPI]) mediators in BAL and sputum.</p> <p>Conclusions</p> <p>Our data suggest that smoking cessation partially changes the macrophage polarization <it>in vivo </it>in the periphery of the lung towards an anti-inflammatory phenotype, which is not accompanied by a decrease in inflammatory parameters.</p

    Prediction of Long-Term Benefits of Inhaled Steroids by Phenotypic Markers in Moderate-to-Severe COPD:A Randomized Controlled Trial

    Get PDF
    BACKGROUND:The decline in lung function can be reduced by long-term inhaled corticosteroid (ICS) treatment in subsets of patients with chronic obstructive pulmonary disease (COPD). We aimed to identify which clinical, physiological and non-invasive inflammatory characteristics predict the benefits of ICS on lung function decline in COPD. METHODS:Analysis was performed in 50 steroid-naive compliant patients with moderate to severe COPD (postbronchodilator forced expiratory volume in one second (FEV1), 30-80% of predicted, compatible with GOLD stages II-III), age 45-75 years, >10 packyears smoking and without asthma. Patients were treated with fluticasone propionate (500 μg bid) or placebo for 2.5 years. Postbronchodilator FEV1, dyspnea and health status were measured every 3 months; lung volumes, airway hyperresponsiveness (PC20), and induced sputum at 0, 6 and 30 months. A linear mixed effect model was used for analysis of this hypothesis generating study. RESULTS:Significant predictors of attenuated FEV1-decline by fluticasone treatment compared to placebo were: fewer packyears smoking, preserved diffusion capacity, limited hyperinflation and lower inflammatory cell counts in induced sputum (p<0.04). CONCLUSIONS:Long-term benefits of ICS on lung function decline in patients with moderate-to-severe COPD are most pronounced in patients with fewer packyears, and less severe emphysema and inflammation. These data generate novel hypotheses on phenotype-driven therapy in COPD. TRIAL REGISTRATION:ClinicalTrials.gov NCT00158847

    Smoking cessation and bronchial epithelial remodelling in COPD: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic Obstructive Pulmonary Disease (COPD) is associated with bronchial epithelial changes, including squamous cell metaplasia and goblet cell hyperplasia. These features are partially attributed to activation of the epidermal growth factor receptor (EGFR). Whereas smoking cessation reduces respiratory symptoms and lung function decline in COPD, inflammation persists. We determined epithelial proliferation and composition in bronchial biopsies from current and ex-smokers with COPD, and its relation to duration of smoking cessation.</p> <p>Methods</p> <p>114 COPD patients were studied cross-sectionally: 99 males/15 females, age 62 ± 8 years, median 42 pack-years, no corticosteroids, current (n = 72) or ex-smokers (n = 42, median cessation duration 3.5 years), postbronchodilator FEV<sub>1 </sub>63 ± 9% predicted. Squamous cell metaplasia (%), goblet cell (PAS/Alcian Blue<sup>+</sup>) area (%), proliferating (Ki-67<sup>+</sup>) cell numbers (/mm basement membrane), and EGFR expression (%) were measured in intact epithelium of bronchial biopsies.</p> <p>Results</p> <p>Ex-smokers with COPD had significantly less epithelial squamous cell metaplasia, proliferating cell numbers, and a trend towards reduced goblet cell area than current smokers with COPD (p = 0.025, p = 0.001, p = 0.081, respectively), but no significant difference in EGFR expression. Epithelial features were not different between short-term quitters (<3.5 years) and current smokers. Long-term quitters (≥3.5 years) had less goblet cell area than both current smokers and short-term quitters (medians: 7.9% vs. 14.4%, p = 0.005; 7.9% vs. 13.5%, p = 0.008; respectively), and less proliferating cell numbers than current smokers (2.8% vs. 18.6%, p < 0.001).</p> <p>Conclusion</p> <p>Ex-smokers with COPD had less bronchial epithelial remodelling than current smokers, which was only observed after long-term smoking cessation (>3.5 years).</p> <p>Trial registration</p> <p>NCT00158847</p

    The Role of FeNO in Cough Management : A Randomised Controlled Trial

    Get PDF
    This abstract is funded by: Observational & Pragmatic Research Institute Pte Ltd, and Circassia Presented at thematic poster session: A34 ASTHMA CLINICAL STUDIES I Sunday 20th MayPeer reviewedPostprin

    Smoking cessation can improve quality of life among COPD patients: Validation of the clinical COPD questionnaire into Greek

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) remains a major public health problem that affects the quality of life of patients, however smoking cessation may emeliorate the functional effects of COPD and alter patient quality of life.</p> <p>Objective-design</p> <p>The aim of this study was to validate the Clinical COPD Questionnaire (CCQ) into Greek and with such to evaluate the quality of life in patients with different stages of COPD, as also assess their quality of life before and after smoking cessation.</p> <p>Results</p> <p>The internal validity of questionnaire was high (Cronbach's a = 0.92). The reliability of equivalent types in 16 stabilized patients also was high (ICC = 0.99). In general the domains within the CCQ were strongly correlated with each other, while each domain in separate was strongly correlated with the overall CCQ score (r<sup>2 </sup>= 0.953, r<sup>2 </sup>= 0.915 and r<sup>2 </sup>= 0.842 in regards to the functional, symptomatic and mental domain, respectively). The CCQ scores were also correlated with FEV<sub>1, </sub>(r<sup>2 </sup>= -0.252, p < 0.001), FEV<sub>1</sub>/FVC, (r<sup>2 </sup>= -0.135, p < 0.001) as also with the quality of life questionnaire SF-12 (r<sup>2 </sup>= -0.384, p < 0.001). Smoking cessation also lead to a significant reduction in CCQ score and increase in the SF-12 score.</p> <p>Conclusions</p> <p>The self administered CCQ indicates satisfactory validity, reliability and responsiveness and may be used in clinical practice to assess patient quality of life. Moreover the CCQ indicated the health related quality of life gains attributable to smoking cessation among COPD patients, projecting smoking cessation as a key target in COPD patient management.</p

    Multidrug resistance-associated protein-1 (MRP1) genetic variants, MRP1 protein levels and severity of COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multidrug resistance-associated protein-1 (MRP1) protects against oxidative stress and toxic compounds generated by cigarette smoking, which is the main risk factor for chronic obstructive pulmonary disease (COPD). We have previously shown that single nucleotide polymorphisms (SNPs) in <it>MRP1 </it>significantly associate with level of FEV<sub>1 </sub>in two independent population based cohorts. The aim of our study was to assess the associations of <it>MRP1 </it>SNPs with FEV<sub>1 </sub>level, MRP1 protein levels and inflammatory markers in bronchial biopsies and sputum of COPD patients.</p> <p>Methods</p> <p>Five SNPs (rs212093, rs4148382, rs504348, rs4781699, rs35621) in <it>MRP1 </it>were genotyped in 110 COPD patients. The effects of <it>MRP1 </it>SNPs were analyzed using linear regression models.</p> <p>Results</p> <p>One SNP, rs212093 was significantly associated with a higher FEV<sub>1 </sub>level and less airway wall inflammation. Another SNP, rs4148382 was significantly associated with a lower FEV<sub>1 </sub>level, higher number of inflammatory cells in induced sputum and with a higher MRP1 protein level in bronchial biopsies.</p> <p>Conclusions</p> <p>This is the first study linking <it>MRP1 </it>SNPs with lung function and inflammatory markers in COPD patients, suggesting a role of <it>MRP1 </it>SNPs in the severity of COPD in addition to their association with MRP1 protein level in bronchial biopsies.</p

    Anti-Inflammatory Role of the cAMP Effectors Epac and PKA: Implications in Chronic Obstructive Pulmonary Disease

    Get PDF
    Cigarette smoke-induced release of pro-inflammatory cytokines including interleukin-8 (IL-8) from inflammatory as well as structural cells in the airways, including airway smooth muscle (ASM) cells, may contribute to the development of chronic obstructive pulmonary disease (COPD). Despite the wide use of pharmacological treatment aimed at increasing intracellular levels of the endogenous suppressor cyclic AMP (cAMP), little is known about its exact mechanism of action. We report here that next to the β2-agonist fenoterol, direct and specific activation of either exchange protein directly activated by cAMP (Epac) or protein kinase A (PKA) reduced cigarette smoke extract (CSE)-induced IL-8 mRNA expression and protein release by human ASM cells. CSE-induced IκBα-degradation and p65 nuclear translocation, processes that were primarily reversed by Epac activation. Further, CSE increased extracellular signal-regulated kinase (ERK) phosphorylation, which was selectively reduced by PKA activation. CSE decreased Epac1 expression, but did not affect Epac2 and PKA expression. Importantly, Epac1 expression was also reduced in lung tissue from COPD patients. In conclusion, Epac and PKA decrease CSE-induced IL-8 release by human ASM cells via inhibition of NF-κB and ERK, respectively, pointing at these cAMP effectors as potential targets for anti-inflammatory therapy in COPD. However, cigarette smoke exposure may reduce anti-inflammatory effects of cAMP elevating agents via down-regulation of Epac1

    Cluster analysis in severe emphysema subjects using phenotype and genotype data: an exploratory investigation

    Get PDF
    Background: Numerous studies have demonstrated associations between genetic markers and COPD, but results have been inconsistent. One reason may be heterogeneity in disease definition. Unsupervised learning approaches may assist in understanding disease heterogeneity. Methods: We selected 31 phenotypic variables and 12 SNPs from five candidate genes in 308 subjects in the National Emphysema Treatment Trial (NETT) Genetics Ancillary Study cohort. We used factor analysis to select a subset of phenotypic variables, and then used cluster analysis to identify subtypes of severe emphysema. We examined the phenotypic and genotypic characteristics of each cluster. Results: We identified six factors accounting for 75% of the shared variability among our initial phenotypic variables. We selected four phenotypic variables from these factors for cluster analysis: 1) post-bronchodilator FEV1 percent predicted, 2) percent bronchodilator responsiveness, and quantitative CT measurements of 3) apical emphysema and 4) airway wall thickness. K-means cluster analysis revealed four clusters, though separation between clusters was modest: 1) emphysema predominant, 2) bronchodilator responsive, with higher FEV1; 3) discordant, with a lower FEV1 despite less severe emphysema and lower airway wall thickness, and 4) airway predominant. Of the genotypes examined, membership in cluster 1 (emphysema-predominant) was associated with TGFB1 SNP rs1800470. Conclusions: Cluster analysis may identify meaningful disease subtypes and/or groups of related phenotypic variables even in a highly selected group of severe emphysema subjects, and may be useful for genetic association studies
    corecore