116 research outputs found

    AN INVESTIGATION INTO SEASONAL POWER CHANGES IN COLLEGIATE BASEBALL PITCHERS

    Get PDF
    This study aimed to investigate changes in power and fatigue of collegiate baseball pitchers throughout a season to determine injury risk. Isokinetic, mobility, and performance test records were reviewed for 18 male NCAA-I baseball athletes. Testing was performed during the offseason, season start, and end of non-conference play and included medicine ball throws, hop testing, and 3-speed isokinetic testing. Statistical analysis determined that the kneeling medicine ball throw, 6-m hop, and several isokinetic outcomes decreased throughout the season. Using a combination of medicine ball throws, hop testing, and isokinetic testing at specific times during a season may provide insight into the overall fatigue level and injury risk within baseball pitchers

    Can local vibration alter the contribution of persistent inward currents to human motoneuron firing?

    Get PDF
    Abstract: The response of spinal motoneurons to synaptic input greatly depends on the activation of persistent inward currents (PICs), which in turn are enhanced by the neuromodulators serotonin and noradrenaline. Local vibration (LV) induces excitatory Ia input onto motoneurons and may alter neuromodulatory inputs. Therefore, we investigated whether LV influences the contribution of PICs to motoneuron firing. This was assessed in voluntary contractions with concurrent, ongoing LV, as well as after a bout of prolonged LV. High-density surface electromyograms (HD-EMG) of the tibialis anterior were recorded with a 64-electrode matrix. Twenty males performed isometric, triangular, dorsiflexion contractions to 20% and 50% of maximal torque at baseline, during LV of the tibialis anterior muscle, and after 30-min of LV. HD-EMG signals were decomposed, and motor units tracked across time points to estimate PICs through a paired motor unit analysis, which quantifies motor unit recruitment–derecruitment hysteresis (ΔF). During ongoing LV, ΔF was lower for both 20% and 50% ramps. Although significant changes in ΔF were not observed after prolonged LV, a differential effect across the motoneuron pool was observed. This study demonstrates that PICs can be non-pharmacologically modulated by LV. Given that LV leads to reflexive motor unit activation, it is postulated that lower PIC contribution to motoneuron firing during ongoing LV results from decreased neuromodulatory inputs associated with lower descending corticospinal drive. A differential effect in motoneurons of different recruitment thresholds after prolonged LV is provocative, challenging the interpretation of previous observations and motivating future investigations. (Figure presented.). Key points: Neuromodulatory inputs from the brainstem influence motoneuron intrinsic excitability through activation of persistent inward currents (PICs). PICs make motoneurons more responsive to excitatory input. We demonstrate that vibration applied on the muscle modulates the contribution of PICs to motoneuron firing, as observed through analysis of the firing of single motor units. The effects of PICs on motoneuron firing were lower when vibration was concurrently applied during voluntary ramp contractions, likely due to lower levels of neuromodulation. Additionally, prolonged exposure to vibration led to differential effects of lower- vs. higher-threshold motor units on PICs, with lower-threshold motor units tending to present an increased and higher-threshold motor units a decreased contribution of PICs to motoneuron firing. These results demonstrate that muscle vibration has the potential to influence the effects of neuromodulation on motoneuron firing. The potential of using vibration as a non-pharmacological neuromodulatory intervention should be further investigated

    Reliability of 2D ultrasound imaging associated with transient ShearWave Elastography method to analyze spastic gastrocnemius medialis muscle architecture and viscoelastic properties

    Get PDF
    PurposeThe aim of the study was to assess the reliability of pennation angle (PA) and muscle thickness (MT) 2D measurements and of shear elastic modulus measurement, using ultrasound imaging (US). Those measurements were made on spastic gastrocnemius medialis muscle at rest and at maximal passive stretching, in post-stroke hemiplegic patients. The paretic side measurements were compared to non-paretic side.Material and methodsFourteen patients took part in 2 inter-session reliability experiments, realized at a 7 days interval by the same operator. The Aixplorer® Supersonic US scanner with the transient ShearWave Elastography (SWE) software was used. The stretching experiments were made manually and controlled by a goniometer.ResultsThe reliability of the 2D measurements was good. The coefficient of variation (CV) was 6.30% for MT measurement at rest, 6.40% and 8.26% for PA at rest and at maximal passive stretching respectively. The reliability of the shear elastic modulus measurement in the sagittal plane was good only at rest with a CV of 9.86%, versus 40.58% at stretching. None of the shear elastic modulus measurements in the axial plane were good. At rest, MT and PA were weaker on the paretic side (14.25±3.12mm and 17.32±5.10°) versus non-paretic side (16.30±3.19mm and 21.08±5.05°) (P<0.0001 and P=0.006). At rest, there was a small difference in the shear elastic modulus between the paretic side and the non-paretic side (5.40±1.67kPa versus 6.20±2.18kPa, P=0.041).DiscussionThis is the first description of muscle spastic structure using SWE with Supersonic Shear Imaging. 2D US associated with SWE shows promise in terms of muscular atrophy quantification and muscle histological quality assessment. These structural properties reflect some of the functional abilities regardless of motor control. It should enable further research on therapies, which impact muscle tissue quality, such as botulinum neurotoxin injections

    Reductions in motoneuron excitability during sustained isometric contractions are dependent on stimulus and contraction intensity

    Get PDF
    Cervicomedullary stimulation provides a means of assessing motoneuron excitability. Previous studies demonstrated that during low-intensity sustained contractions, small cervicomedullary evoked potentials (CMEPs) conditioned using transcranial magnetic stimulation (TMS-CMEPs) are reduced, whereas large TMS-CMEPs are less affected. As small TMS-CMEPs recruit motoneurons most active during low-intensity contractions whereas large TMS-CMEPs recruit a high proportion of motoneurons inactive during the task, these results suggest that reductions in motoneuron excitability could be dependent on repetitive activation. To further test this hypothesis, this study assessed changes in small and large TMS-CMEPs across low- and high-intensity contractions. Twelve participants performed a sustained isometric contraction of the elbow flexor for 4.5 min at the electromyography (EMG) level associated with 20% maximal voluntary contraction force (MVC; low intensity) and 70% MVC (high intensity). Small and large TMS-CMEPs with amplitudes of ∼15% and ∼50% Mmax at baseline, respectively, were delivered every minute throughout the tasks. Recovery measures were taken at 1-, 2.5- and 4-min postexercise. During the low-intensity trial, small TMS-CMEPs were reduced at 2-4 min (P ≤ 0.049) by up to -10% Mmax, whereas large TMS-CMEPs remained unchanged (P ≥ 0.16). During the high-intensity trial, small and large TMS-CMEPs were reduced at all time points (P &lt; 0.01) by up to -14% and -33% Mmax, respectively, and remained below baseline during all recovery measures (P ≤ 0.02). TMS-CMEPs were unchanged relative to baseline during recovery following the low-intensity trial (P ≥ 0.24). These results provide novel insight into motoneuron excitability during and following sustained contractions at different intensities and suggest that contraction-induced reductions in motoneuron excitability depend on repetitive activation

    A computational framework for generating patient-specific vascular models and assessing uncertainty from medical images

    Full text link
    Patient-specific computational modeling is a popular, non-invasive method to answer medical questions. Medical images are used to extract geometric domains necessary to create these models, providing a predictive tool for clinicians. However, in vivo imaging is subject to uncertainty, impacting vessel dimensions essential to the mathematical modeling process. While there are numerous programs available to provide information about vessel length, radii, and position, there is currently no exact way to determine and calibrate these features. This raises the question, if we are building patient-specific models based on uncertain measurements, how accurate are the geometries we extract and how can we best represent a patient's vasculature? In this study, we develop a novel framework to determine vessel dimensions using change points. We explore the impact of uncertainty in the network extraction process on hemodynamics by varying vessel dimensions and segmenting the same images multiple times. Our analyses reveal that image segmentation, network size, and minor changes in radius and length have significant impacts on pressure and flow dynamics in rapidly branching structures and tapering vessels. Accordingly, we conclude that it is critical to understand how uncertainty in network geometry propagates to fluid dynamics, especially in clinical applications.Comment: 21 pages, 9 figure

    Reductions in motoneuron excitability during sustained isometric contractions are dependent on stimulus and contraction intensity

    Get PDF
    Cervicomedullary stimulation provides a means of assessing motoneuron excitability. Previous studies demonstrated that during low-intensity sustained contractions, small cervicomedullary evoked potentials (CMEPs) conditioned using transcranial magnetic stimulation (TMS-CMEPs) are reduced, whereas large TMS-CMEPs are less affected. As small TMS-CMEPs recruit motoneurons most active during low-intensity contractions whereas large TMS-CMEPs recruit a high proportion of motoneurons inactive during the task, these results suggest that reductions in motoneuron excitability could be dependent on repetitive activation. To further test this hypothesis, this study assessed changes in small and large TMS-CMEPs across low- and high-intensity contractions. Twelve participants performed a sustained isometric contraction of the elbow flexor for 4.5 min at the electromyography (EMG) level associated with 20% maximal voluntary contraction force (MVC; low intensity) and 70% MVC (high intensity). Small and large TMS-CMEPs with amplitudes of ∼15% and ∼50% Mmax at baseline, respectively, were delivered every minute throughout the tasks. Recovery measures were taken at 1-, 2.5- and 4-min postexercise. During the low-intensity trial, small TMS-CMEPs were reduced at 2–4 min (P ≤ 0.049) by up to −10% Mmax, whereas large TMS-CMEPs remained unchanged (P ≥ 0.16). During the high-intensity trial, small and large TMS-CMEPs were reduced at all time points (P < 0.01) by up to −14% and −33% Mmax, respectively, and remained below baseline during all recovery measures (P ≤ 0.02). TMS-CMEPs were unchanged relative to baseline during recovery following the low-intensity trial (P ≥ 0.24). These results provide novel insight into motoneuron excitability during and following sustained contractions at different intensities and suggest that contraction-induced reductions in motoneuron excitability depend on repetitive activation. NEW & NOTEWORTHY This study measured motoneuron excitability using cervicomedullary evoked potentials conditioned using transcranial magnetic stimulation (TMS-CMEPs) of both small and large amplitudes during sustained low- and high-intensity contractions of the elbow flexors. During the low-intensity task, only the small TMS-CMEP was reduced. During the high-intensity task, both small and large TMS-CMEPs were substantially reduced. These results indicate that repetitively active motoneurons are specifically reduced in excitability compared with less active motoneurons in the same pool

    Measuring objective fatigability and autonomic dysfunction in clinical populations: How and why?

    Get PDF
    Fatigue is a major symptom in many diseases, often among the most common and severe ones and may last for an extremely long period. Chronic fatigue impacts quality of life, reduces the capacity to perform activities of daily living, and has socioeconomical consequences such as impairing return to work. Despite the high prevalence and deleterious consequences of fatigue, little is known about its etiology. Numerous causes have been proposed to explain chronic fatigue. They encompass psychosocial and behavioral aspects (e.g., sleep disorders) and biological (e.g., inflammation), hematological (e.g., anemia) as well as physiological origins. Among the potential causes of chronic fatigue is the role of altered acute fatigue resistance, i.e. an increased fatigability for a given exercise, that is related to physical deconditioning. For instance, we and others have recently evidenced that relationships between chronic fatigue and increased objective fatigability, defined as an abnormal deterioration of functional capacity (maximal force or power), provided objective fatigability is appropriately measured. Indeed, in most studies in the field of chronic diseases, objective fatigability is measured during single-joint, isometric exercises. While those studies are valuable from a fundamental science point of view, they do not allow to test the patients in ecological situations when the purpose is to search for a link with chronic fatigue. As a complementary measure to the evaluation of neuromuscular function (i.e., fatigability), studying the dysfunction of the autonomic nervous system (ANS) is also of great interest in the context of fatigue. The challenge of evaluating objective fatigability and ANS dysfunction appropriately (i.e.,. how?) will be discussed in the first part of the present article. New tools recently developed to measure objective fatigability and muscle function will be presented. In the second part of the paper, we will discuss the interest of measuring objective fatigability and ANS (i.e. why?). Despite the beneficial effects of physical activity in attenuating chronic fatigue have been demonstrated, a better evaluation of fatigue etiology will allow to personalize the training intervention. We believe this is key in order to account for the complex, multifactorial nature of chronic fatigue

    How about running on Mars? Influence of sensorimotor coherence on running and spatial perception in simulated reduced gravity

    Get PDF
    Motor control, including locomotion, strongly depends on the gravitational field. Recent developments such as lower-body positive pressure treadmills (LBPPT) have enabled studies on Earth about the effects of reduced body weight (BW) on walking and running, up to 60% BW. The present experiment was set up to further investigate adaptations to a more naturalistic simulated hypogravity, mimicking a Martian environment with additional visual information during running sessions on LBPPT. Twenty-nine participants performed three sessions of four successive five-min runs at preferred speed, alternating Earth- or simulated Mars-like gravity (100% vs. 38% BW). They were displayed visual scenes using a virtual reality headset to assess the effects of coherent visual flow while running. Running performance was characterized by normal ground reaction force and pelvic accelerations. The perceived upright and vection (visually-induced self-motion sensation)in dynamic visual environments were also investigated at the end of the different sessions. We found that BW reduction induced biomechanical adaptations independently of the visual context. Active peak force and stance time decreased, while flight time increased. Strong inter-individual differences in braking and push-off times appeared at 38% BW, which were not systematically observed in our previous studies at 80% and 60% BW. Additionally, the importance given to dynamic visual cues in the perceived upright diminished at 38% BW, suggesting an increased reliance on the egocentric body axis as a reference for verticality when the visual context is fully coherent with the previous locomotor activity. Also, while vection was found to decrease in case of a coherent visuomotor coupling at 100% BW (i.e., post-exposure influence), it remained unaffected by the visual context at 38% BW. Overall, our findings suggested that locomotor and perceptual adaptations were not similarly impacted, depending on the -simulated- gravity condition and visual context
    • …
    corecore