9 research outputs found
Production of exopolysaccharides by Lactococcus lactis subsp. cremoris MG1363 expressing the eps gene clusters from two strains of Lactobacillus rhamnosus
The aim of this study was to transfer the 18.5 kb gene clusters coding for 17 genes from Lactobacillus rhamnosus to Lactococcus lactis subsp. cremoris MG1363 in order to determine the effect of host on exopolysaccharide (EPS) production and to provide a model for studying the phosphorylation of proteins which are proposed to be involved in EPS polymerization. Lactobacillus rhamnosus RW-9595M and ATCC 9595 have 99% identical operons coding for EPS biosynthesis, produced different amounts of EPS (543 vs 108 mg/l). L. lactis subsp. cremoris MG1363 transformed with the operons from RW-9595M and ATCC 9595 respectively, produced 326 and 302 mg/l EPS in M17 containing 0.5% glucose. The tyrosine protein kinase transmembrane modulator (Wzd) was proposed to participate in regulating chain elongation of EPS polymers by interacting with the tyrosine protein kinase Wze. While Wzd was found in phosphorylated form in the presence of the phosphorylated kinase (Wze), no phosphorylated proteins were detected when all nine tyrosines of Wzd were mutated to phenylalanine. Lactococcus lactis subsp. cremoris could produce higher amounts of EPS than other EPS-producing lactococci when expressing genes from L. rhamnosus. Phosphorylated Wzd was essential for the phosphorylation of Wze when expressed in vivo. ? 2018, The Korean Society for Microbiology and Biotechnolog
Genome comparison of Bifidobacterium longum strains NCC2705 and CRC-002 using suppression subtractive hybridization.
Because probiotic effects are strain dependent, genomic explanations of these differences will contribute to understanding their mechanisms of action. The genomic sequence of the Bifidobacterium longum probiotic strain NCC2705 was determined, but little is known about the genetic diversity between strains of this species. Suppression subtractive hybridization (SSH) is a powerful method for generating a set of DNA fragments differing between two closely related bacterial strains. The purpose of this study was to identify genetic differences between genomes of B. longum strains NCC2705 and CRC-002 using PCR-based SSH. Strain CRC-002 produces exopolysaccharides whereas NCC2705 is not known for reliable exopolysaccharide production. Thirty-five and 30 different sequences were obtained from the SSH libraries of strains CRC-002 and NCC2705, respectively. Specific CRC-002 genes found were predicted to be involved in the biosynthesis of exopolysaccharides and metabolism of other carbohydrates, and these genes were not present in the genome of strain NCC2705. The identification of an endo-1,4-beta-xylanase gene in the CRC-002 SSH library is an important difference because xylanase genes have previously been proposed as a defining characteristic of the NCC2705 strain. The results demonstrate that the SSH technique was useful to highlight potential genes involved in complex sugar metabolism that differ between the two probiotic strains
A tyrosine phosphorylation switch controls the interaction between the transmembrane modulator protein Wzd and the tyrosine kinase Wze of Lactobacillus rhamnosus
Background: One proposed mechanism for assembly of secreted heteropolysaccharides by many Gram positive bacteria relies on the coordinated action of a polymerization complex through reversible phosphorylation events. The role of the tyrosine protein kinase transmembrane modulator is, however, not well understood. Results: The protein sequences deduced from the wzb, wzd and wze genes from Lactobacillus rhamnosus ATCC 9595 and RW-9595 M contain motifs also found in corresponding proteins CpsB, CpsC and CpsD from Streptococcus pneumoniae D39 (serotype 2). Use of an anti-phosphotyrosine antibody demonstrated that both Wzd and Wze can be found in tyrosine phosphorylated form. When tyrosine 266 was mutated to phenylalanine, WzdY266F showed slightly less phosphorylated protein than those produced by using eight other tyrosine mutated Wzd genes, when expressed along with Wze and Wzb in Lactococcus lactis subsp. cremoris MG1363. In order to demonstrate the importance of ATP for the interactions among these proteins, native and fusion Wzb, Wzd and Wze proteins were expressed and purified from Escherichia coli cultures. The modulator protein, Wzd, binds with the phosphotyrosine kinase Wze, irrespective of its phosphorylation status. However, Wze attained a higher phosphorylation level after interacting with phosphorylated Wzd in the presence of 10 mM ATP. This highly phosphorylated Wze did not remain in close association with phosphorylated Wzd. Conclusion: The Wze tyrosine kinase protein of Lactobacillus rhamnosus thus carries out tyrosine phosphorylation of Wzd in addition to auto- and trans- phosphorylation of the kinase itself © BioMed Central101sciescopu
A toddler SHIME® model to study microbiota of young children.
The 'first 1000 days of life' determine the gut microbiota composition and can have long-term health consequences. In this study, the simulator of the human intestinal microbial ecosystem (SHIME®) model, which represents the main functional sections of the digestive tract, was chosen to study the microbiota of young children. The aim of this study was to reproduce the digestive process of toddlers and their specific colonic environment. The ascending, transverse and descending colons of SHIME® model were inoculated with feces from three donors aged between 1 and 2 years-old, in three separate runs. For each run, samples from colon vessels were collected at days 14, 21 and 28 after microbiota stabilization period. Short chain fatty acid concentrations determined by HPLC showed that microbiota obtained in SHIME® model shared characteristics between adults and infants. In addition, microbial diversity and bacterial populations determined by 16S rRNA amplicon sequencing were specific to each colon vessel. In conclusion, the SHIME® model developed in this study seemed well adapted to evaluate prebiotic and probiotic impact on the specific microbiota of toddlers, or medicine and endocrine disruptor metabolism. Moreover, this study is the first to highlight some biofilm development in in vitro gastrointestinal modelling systems
Genome sequence of Vibrio diabolicus and identification of the exopolysaccharide HE800 biosynthesis locus
Vibrio diabolicus, a marine bacterium originating from deep-sea hydrothermal vents, produces the HE800 exopolysaccharide with high value for biotechnological purposes, especially for human health. Its genome was sequenced and analyzed; phylogenetic analysis using the core genome revealed V. diabolicus is close to another deep-sea Vibrio sp. (Ex25) within the Harveyi clade and Alginolyticus group. A genetic locus homologous to the syp cluster from Vibrio fischeri was demonstrated to be involved in the HE800 production. However, few genetic particularities suggest that the regulation of syp expression may be different in V. diabolicus. The presence of several types of glycosyltransferases within the locus indicates a capacity to generate diversity in the glycosidic structure, which may confer an adaptability to environmental conditions. These results contribute to better understanding exopolysaccharide biosynthesis and for developing new efficient processes to produce this molecule for biotechnological applications