2,296 research outputs found
The Eect of Mechanical Loading on the Frequency of an Oscillator Circuit
We investigate the effect of mechanical strain on the frequency of an electronic oscillator embedded in an integrated circuit. This analysis is aimed at explaining a 1% inaccuracy in the oscillator frequency under test conditions prescribed by a leading supplier of semi-conductor devices. During the test the package containing the oscillator was clamped to a circuit board by mechanical pressure. By considering the nature of the oscillator we show that tensile strains of the order of 10^-4 could explain the observations via the piezoresistance effect. Both a simple one-dimensional analysis based on the beam equation and an elastic finite element simulation show that strains of this magnitude can be generated during the test
3D modelling of angiogenesis and vascular tumour growth
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute
Measurement of the neutron electric dipole moment via spin rotation in a non-centrosymmetric crystal
We have measured the neutron electric dipole moment using spin rotation in a
non-centrosymmetric crystal. Our result is d_n = (2.5 +- 6.5(stat) +-
5.5(syst)) 10^{-24} e cm. The dominating contribution to the systematic
uncertainty is statistical in nature and will reduce with improved statistics.
The statistical sensitivity can be increased to 2 10^{-26} e cm in 100 days
data taking with an improved setup. We state technical requirements for a
systematic uncertainty at the same level.Comment: submitted to Phys. Lett.
Measurement of the neutron electric dipole moment by crystal diffraction
An experiment using a prototype setup to search for the neutron electric
dipole moment by measuring spin-rotation in a non-centrosymmetric crystal
(quartz) was carried out to investigate statistical sensitivity and systematic
effects of the method. It has been demonstrated that the concept of the method
works. The preliminary result of the experiment is ecm. The experiment showed that an accuracy of ecm can be obtained in 100 days data taking, using available
quartz crystals and neutron beams.Comment: 13 pages, 4 figure
Saturation in Liquid/Gas Coalescence
The problem was to construct a mathematical model for a liquid/gas coalescer, in order that the model could be analyzed to find combinations of parameters that would minimize the effects of saturation.
The team has developed three complementary models, each with different strengths and weaknesses so that, depending on the information desired, one model may be more useful than another. The three models are:
1. A continuum model giving a macroscopic description of the filter. The governing equations are derived from first-principle consider- ations of conservation of mass and momentum. Constitutive relations for this model are derived by considering the processes going on in the filter at a microscopic level.
2. A stochastic model based on a Markov Decision Process. Each droplet is modelled as a single entity that can merge or move stochastically. This leads to a Markov simulation of the filter and the computation of average quantities.
3. A Lattice-Boltzmann model. The droplets are modelled to interact with each other and with the filter, using a Boltzmann distribution for their speed. This simulates the hydrodynamic behaviour of the droplet inside the filter
- …
