49 research outputs found

    The conserved N-terminal basic residues and zinc-finger motifs of HIV-1 nucleocapsid restrict the viral cDNA synthesis during virus formation and maturation

    Get PDF
    Reverse transcription of the genomic RNA by reverse transcriptase occurs soon after HIV-1 infection of target cells. The viral nucleocapsid (NC) protein chaperones this process via its nucleic acid annealing activities and its interactions with the reverse transcriptase enzyme. To function, NC needs its two conserved zinc fingers and flanking basic residues. We recently reported a new role for NC, whereby it negatively controls reverse transcription in the course of virus formation. Indeed, deleting its zinc fingers causes reverse transcription activation in virus producer cells. To investigate this new NC function, we used viruses with subtle mutations in the conserved zinc fingers and its flanking domains. We monitored by quantitative PCR the HIV-1 DNA content in producer cells and in produced virions. Results showed that the two intact zinc-finger structures are required for the temporal control of reverse transcription by NC throughout the virus replication cycle. The N-terminal basic residues also contributed to this new role of NC, while Pro-31 residue between the zinc fingers and Lys-59 in the C-terminal region did not. These findings further highlight the importance of NC as a major target for anti-HIV-1 drugs

    Interactions between HIV-1 nucleocapsid protein and viral DNA may have important functions in the viral life cycle.

    No full text
    In the virion core of retroviruses, the genomic RNA is tightly associated with nucleocapsid (NC) protein molecules, forming the nucleocapsid structure. NC protein, a highly basic protein with two zinc fingers, is indispensable for RNA dimerization, encapsidation and the initiation of reverse transcription in avian, murine and human retroviruses. Here we show that NC protein of HIV-1 (NCp7) and NCp7 mutants bind to DNA fragments representing proviral DNA sequences, forming stable complexes. NCp7 and NCp7 mutants form high molecular weight complexes with large DNA fragments and show cooperativity in binding to the DNAs. It appears that the conserved basic residues, and not the zinc fingers, are important for complex formation. In addition, NCp7 and several NCp7 mutants protect DNAs from nuclease digestion while the DNA ends appear to be poorly protected. NCp7 has been found to bind to strong stop cDNA, the initial product of reverse transcription, and to promote the annealing of this cDNA to HIV-1 RNA corresponding to the 3' end of the genome. In addition, NCp7 slightly stimulates an in vitro IN cleavage assay. These results indicate that the interactions between NCp7 and proviral DNA may be important during provirus synthesis and/or prior to integration

    Nucleic Acid Chaperone Activity of the ORF1 Protein from the Mouse LINE-1 Retrotransposon

    No full text
    Non-LTR retrotransposons such as L1 elements are major components of the mammalian genome, but their mechanism of replication is incompletely understood. Like retroviruses and LTR-containing retrotransposons, non-LTR retrotransposons replicate by reverse transcription of an RNA intermediate. The details of cDNA priming and integration, however, differ between these two classes. In retroviruses, the nucleocapsid (NC) protein has been shown to assist reverse transcription by acting as a “nucleic acid chaperone,” promoting the formation of the most stable duplexes between nucleic acid molecules. A protein-coding region with an NC-like sequence is present in most non-LTR retrotransposons, but no such sequence is evident in mammalian L1 elements or other members of its class. Here we investigated the ORF1 protein from mouse L1 and found that it does in fact display nucleic acid chaperone activities in vitro. L1 ORF1p (i) promoted annealing of complementary DNA strands, (ii) facilitated strand exchange to form the most stable hybrids in competitive displacement assays, and (iii) facilitated melting of an imperfect duplex but stabilized perfect duplexes. These findings suggest a role for L1 ORF1p in mediating nucleic acid strand transfer steps during L1 reverse transcription
    corecore