803 research outputs found

    Numerical and experimental analysis of micro HAWTs designed for wind tunnel applications

    Get PDF
    In this paper the authors describe a design and optimization process of micro HAWTs using a numerical and experimental approach. An in-house 1D BEM model was used to obtain a first geometrical draft. It allowed to quickly optimize blade geometry to maximize energy production as well. As these models are quite sensitive to airfoil coefficients, above all at low Reynolds numbers, an accurate 3D CFD model was developed to support and validate the 1D BEM design, analyzing and fixing the discrepancies between model output. The 3D CFD model was developed and optimized using ANSYS Fluent solver and a RANS transition turbulence model. This allowed to correctly reproduce the transition and stall phenomena that characterize the aerodynamic behavior of micro wind turbines, solving the issues related to low Reynolds flows. The procedure was completed, thus building two micro HAWTs with different scales, testing them in the subsonic wind tunnel of the University of Catania. Wind tunnel features, experimental set-up and testing procedures are presented in the paper. Through the comparison of numerical CFD and experimental test results, a good compatibility was found. This allowed the authors to analyze and compare numerical calculation results and verify blockage effects on the prototypes as well

    A site selection model to identify optimal locations for microalgae biofuel production facilities in sicily (Italy)

    Get PDF
    The lack of sustainability and negative environmental impacts of using fossil fuel resources for energy production and their consequent increase in prices during last decades have led to an increasing interest in the development of renewable biofuels. Among possible biomass fuel sources, microalgae represent one of the most promising solutions. The present work is based on the implementation of a model that facilitates identification of optimal geographic locations for large-scale open ponds for microalgae cultivation for biofuels production. The combination of a biomass production model with specific site location parameters such as irradiance, geographical constraints, land use, topography, temperatures and CO2 for biofuels plants were identified in Sicily (Italy). A simulation of CO2 saved by using the theoretical biofuel produced in place of traditional fuel was implemented. Results indicate that the territory of Sicily offers a good prospective for these technologies and the results identify ideal locations for locating biomass fuel production facilities. Moreover, the research provides a robust method that can be tailored to the specific requirements and data availability of other territories. © Research India Publications

    Constraining the extra heating of the Diffuse Ionized Gas in the Milky Way

    Full text link
    The detailed observations of the diffuse ionized gas through the emission lines Hα\alpha, [NII], and [SII] in the Perseus Arm of our Galaxy by the Wisconsin Hα\alpha Mapper (WHAM)--survey challenge photoionization models. They have to explain the observed rise in the line ratios [NII]/Hα\alpha and [SII]/Hα\alpha. The models described here consider for the first time the detailed observational geometry toward the Perseus Arm. The models address the vertical variation of the line ratios up to height of 2 kpc above the midplane. The rising trends of the line ratios are matched. The increase in the line ratios is reflected in a rise of the temperature of the gas layer. This is due to the progressive hardening of the radiation going through the gas. However an extra heating above photoionization is needed to explain the absolute values. Two different extra heating rates are investigated which are proportional to n0n^0 and n1n^1. The models show that a combination of both are best to explain the data, where the extra heating independent of density is dominant for z >> 0.8 kpc.Comment: accepted for publication in Ap

    Flow similitude laws applied to wind turbines through blade element momentum theory numerical codes

    Get PDF
    This paper deals with the analysis of the per- formance of different wind turbines using the Similitude Theory. Wind turbine performance was determined as a function of geometrical similarity coefficient, which is related to all parameters of the Similitude Theory. There- fore, a mathematical model simplification is possible in the 'in similitude' wind turbines comparison. The mathemati- cal model for wind turbine performance is based on BEM Theory, and its efficacy was verified several times by comparing different wind turbine experimental data. The original mathematical model was modified to take into account Similitude Theory parameters. The model is able to determine which wind turbine is most suited to particular design specification. This work presents power and torque curves, power and torque coefficients as functions of rotational speed and wind velocity. All the results are function of the geometrical similarity coefficient. With this methodology it is possible to maximize the power coeffi- cients of a wind turbine, and it is possible to identify a family of wind turbines, geometrically different, but with the same high performances

    HAWT Design and Performance Evaluation: Improving the BEM Theory Mathematical Models☆

    Get PDF
    Abstract This paper presents an improved numerical code based on BEM theory, implemented to evaluate the performance of a HAWT (Horizontal Axis Wind Turbines). This numerical code is a 1-D code characterized by fast processing times and reliable results. The critical aspects of the codes based on the BEM theory are widely known in scientific literature. In this paper, the authors explain how to resolve these aspects. One of these is represented by the radial flow along the blades. Radial flow is a 3-D flow, but can be dealt with inside a 1-D code only using a mathematical expedient. This expedient was tested and validated for the Riso test turbine LM 8.2 (with the NACA 63 x -2xx airfoil series along the blades). Radial flow along the blades is taken into account, thus increasing the experimental C L distribution in the stalled aerodynamic region, based on CFD 3D results. The mathematical equation adopted to describe the C L distribution of the NACA 63 x -2xx airfoil is a fifth order logarithmic polynomial. With this numerical code, the mechanical power curve of the Riso test turbine has been calculated, and then compared with the experimental curve found in scientific literature

    Numerical and experimental analysis of micro HAWTs designed for wind tunnel applications

    Get PDF
    In this paper the authors describe a design and optimization process of micro HAWTs using a numerical and experimental approach. An in-house 1D BEM model was used to obtain a first geometrical draft. It allowed to quickly optimize blade geometry to maximize energy production as well. As these models are quite sensitive to airfoil coefficients, above all at low Reynolds numbers, an accurate 3D CFD model was developed to support and validate the 1D BEM design, analyzing and fixing the discrepancies between model output. The 3D CFD model was developed and optimized using ANSYS Fluent solver and a RANS transition turbulence model. This allowed to correctly reproduce the transition and stall phenomena that characterize the aerodynamic behavior of micro wind turbines, solving the issues related to low Reynolds flows. The procedure was completed, thus building two micro HAWTs with different scales, testing them in the subsonic wind tunnel of the University of Catania. Wind tunnel features, experimental set-up and testing procedures are presented in the paper. Through the comparison of numerical CFD and experimental test results, a good compatibility was found. This allowed the authors to analyze and compare numerical calculation results and verify blockage effects on the prototypes as well

    Design of a vertical-axis wind turbine: how the aspect ratio affects the turbine's performance

    Get PDF
    This work analyses the link between the aspect ratio of a vertical-axis straight-bladed (H-Rotor) wind turbine and its performance (power coefficient). The aspect ratio of this particular wind turbine is defined as the ratio between blade length and rotor radius. Since the aspect ratio variations of a vertical-axis wind turbine cause Reynolds number variations, any changes in the power coefficient can also be studied to derive how aspect ratio variations affect turbine performance. Using a calculation code based on the Multiple Stream Tube Model, symmetrical straight-bladed wind turbine performance was evaluated as aspect ratio varied. This numerical analysis highlighted how turbine performance is strongly influenced by the Reynolds number of the rotor blade. From a geometrical point of view, as aspect ratio falls, the Reynolds number rises which improves wind turbine performance

    wind turbine placement optimization by means of the monte carlo simulation method

    Get PDF
    This paper defines a new procedure for optimising wind farm turbine placement by means of Monte Carlo simulation method. To verify the algorithm's accuracy, an experimental wind farm was tested in a wind tunnel. On the basis of experimental measurements, the error on wind farm power output was less than 4%. The optimization maximises the energy production criterion; wind turbines' ground positions were used as independent variables. Moreover, the mathematical model takes into account annual wind intensities and directions and wind turbine interaction. The optimization of a wind farm on a real site was carried out using measured wind data, dominant wind direction, and intensity data as inputs to run the Monte Carlo simulations. There were 30 turbines in the wind park, each rated at 20 kW. This choice was based on wind farm economics. The site was proportionally divided into 100 square cells, taking into account a minimum windward and crosswind distance between the turbines. The results highlight that the dominant wind intensity factor tends to overestimate the annual energy production by about 8%. Thus, the proposed method leads to a more precise annual energy evaluation and to a more optimal placement of the wind turbines

    Trend Analysis of Air Quality Index in Catania from 2010 to 2014

    Get PDF
    Abstract Information on air quality in urban areas represents an important objective to raise awareness and participation of citizens towards those measures aimed at containing and reducing vehicular traffic. For several years at the international level, evaluation procedures have been adopted by indices. One of the first synthetic indices, adopted by the United States Environmental Protection Agency (US-EPA), was the Pollution Standard Index (PSI). In 1999, the EPA replaced the PSI index with Air Quality Index (AQI), which includes two new sub-indices, the ozone at ground level and fine particulate. Despite the European Decisions 97/101/EC and 2001/752/EC, have established an exchange of information from networks and individual stations measuring ambient air pollution in Member States, the use of a single index has not yet been defined that allows you to compare different realities. This heterogeneity emerges in Italy as well, where only a few Environmental Protection Agencies disclose indexes to inform citizens. In this article, the Air Quality Index (AQI) currently used by the United States Environmental Protection Agency has been applied to the metropolitan city of Catania, in order to analyze the level of pollution daily from 2010 to 2014. Through the use of the AQI it was possible to synthesize in a single daily value, concentrations of major pollutants in urban areas (NO2, O3, CO, SO2, PM10) for the entire period. For the calculation procedure of the AQI, the data concentrations were provided by Municipal Ecology and Environment Office. The data relates to three monitoring stations, whose locations have not changed over the years. This also made it possible to evaluate the change in frequency of AQI agglomerations where the monitoring units have been positioned. The value obtained by the AQI for each station has been ranked in six levels of pollution; each level has been associated with a particular coloring allowing this information to be more intuitive. Lastly, it was possible to reach the air quality assessment in urban environment from the frequency variations of each level derived from the year 2010 until 2014
    corecore