33 research outputs found

    PCSK9, apolipoprotein E and lipoviral particles in chronic hepatitis C genotype 3: evidence for genotype-specific regulation of lipoprotein metabolism.

    Get PDF
    BACKGROUND & AIMS: Hepatitis C virus (HCV) associates with lipoproteins to form "lipoviral particles" (LVPs) that can facilitate viral entry into hepatocytes. Initial attachment occurs via heparan sulphate proteoglycans and low-density lipoprotein receptor (LDLR); CD81 then mediates a post-attachment event. Proprotein convertase subtilisin kexin type 9 (PCSK9) enhances the degradation of the LDLR and modulates liver CD81 levels. We measured LVP and PCSK9 in patients chronically infected with HCV genotype (G)3. PCSK9 concentrations were also measured in HCV-G1 to indirectly examine the role of LDLR in LVP clearance. METHODS: HCV RNA, LVP (d1.07g/ml) fractions, were quantified in patients with HCV-G3 (n=39) by real time RT-PCR and LVP ratios (LVPr; LVP/(LVP+non-LVP)) were calculated. Insulin resistance (IR) was assessed using the homeostasis model assessment of IR (HOMA-IR). Plasma PCSK9 concentrations were measured by ELISA in HCV-G3 and HCV-G1 (n=51). RESULTS: In HCV-G3 LVP load correlated inversely with HDL-C (r=-0.421; p=0.008), and apoE (r=-0.428; p=0.013). The LVPr varied more than 35-fold (median 0.286; range 0.027 to 0.969); PCSK9 was the strongest negative predictor of LVPr (R(2)=16.2%; p=0.012). HOMA-IR was not associated with LVP load or LVPr. PCSK9 concentrations were significantly lower in HCV-G3 compared to HCV-G1 (p<0.001). PCSK9 did not correlate with LDL-C in HCV-G3 or G1. CONCLUSIONS: The inverse correlation of LVP with apoE in HCV-G3, compared to the reverse in HCV-G1 suggests HCV genotype-specific differences in apoE mediated viral entry. Lower PCSK9 and LDL concentrations imply upregulated LDLR activity in HCV-G3

    Shigatoxin encoding bacteriophage ɸ24B modulates bacterial metabolism to raise antimicrobial tolerance

    Get PDF
    How temperate bacteriophages play a role in microbial infection and disease progression is not fully understood. They do this in part by carrying genes that promote positive evolutionary selection for the lysogen. Using Biolog phenotype microarrays and comparative metabolite profiling we demonstrate the impact of the well-characterised Shiga toxin-prophage ɸ24B on its Escherichia coli host MC1061. As a lysogen, the prophage alters the bacterial physiology by increasing the rates of respiration and cell proliferation. This is the first reported study detailing phage-mediated control of the E. coli biotin and fatty acid synthesis that is rate limiting to cell growth. Through ɸ24B conversion the lysogen also gains increased antimicrobial tolerance to chloroxylenol and 8-hydroxyquinoline. Distinct metabolite profiles discriminate between MC1061 and the ɸ24B lysogen in standard culture, and when treated with 2 antimicrobials. This is also the first reported use of metabolite profiling to characterise the physiological impact of lysogeny under antimicrobial pressure. We propose that temperate phages do not need to carry antimicrobial resistance genes to play a significant role in tolerance to antimicrobials

    Is Mate Choice in Humans MHC-Dependent?

    Get PDF
    In several species, including rodents and fish, it has been shown that the Major Histocompatibility Complex (MHC) influences mating preferences and, in some cases, that this may be mediated by preferences based on body odour. In humans, the picture has been less clear. Several studies have reported a tendency for humans to prefer MHC-dissimilar mates, a sexual selection that would favour the production of MHC-heterozygous offspring, who would be more resistant to pathogens, but these results are unsupported by other studies. Here, we report analyses of genome-wide genotype data (from the HapMap II dataset) and HLA types in African and European American couples to test whether humans tend to choose MHC-dissimilar mates. In order to distinguish MHC-specific effects from genome-wide effects, the pattern of similarity in the MHC region is compared to the pattern in the rest of the genome. African spouses show no significant pattern of similarity/dissimilarity across the MHC region (relatedness coefficient, R = 0.015, p = 0.23), whereas across the genome, they are more similar than random pairs of individuals (genome-wide R = 0.00185, p<10−3). We discuss several explanations for these observations, including demographic effects. On the other hand, the sampled European American couples are significantly more MHC-dissimilar than random pairs of individuals (R = −0.043, p = 0.015), and this pattern of dissimilarity is extreme when compared to the rest of the genome, both globally (genome-wide R = −0.00016, p = 0.739) and when broken into windows having the same length and recombination rate as the MHC (only nine genomic regions exhibit a higher level of genetic dissimilarity between spouses than does the MHC). This study thus supports the hypothesis that the MHC influences mate choice in some human populations
    corecore