
Research Article

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library
PCSK9, apolipoprotein E and lipoviral particles in chronic hepatitis
C genotype 3: Evidence for genotype-specific regulation of

lipoprotein metabolism

Simon H. Bridge1,2,⇑, David A. Sheridan1,3, Daniel J. Felmlee1,4, Mary M.E. Crossey5,
Fiona I. Fenwick1, Clare V. Lanyon2, Geneviève Dubuc6,9, Nabil G. Seidah7,9,

Jean Davignon6,9, Howard C. Thomas5, Simon D. Taylor-Robinson5,
Geoffrey L. Toms1, R. Dermot G. Neely1,8, Margaret F. Bassendine1,⇑

1Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; 2Faculty of Health and Life Sciences, Northumbria
University, Newcastle upon Tyne, United Kingdom; 3Institute of Translational & Stratified Medicine, Plymouth University Peninsula School of

Medicine & Dentistry, United Kingdom; 4Inserm U1110, University of Strasbourg and Center for Liver and Digestive Diseases, Strasbourg
University Hospitals, 3 Rue Koeberlé, F-67000 Strasbourg, France; 5Liver Unit, Department of Medicine, Imperial College London, St Mary’s

Hospital Campus, Praed Street, London, United Kingdom; 6Hyperlipidemia and Atherosclerosis Research Group, Clinical Research Institute of
Montréal (IRCM), Montréal, Canada; 7Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montréal, Montréal, Canada;

8Department of Clinical Biochemistry, Newcastle upon Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, United Kingdom;
9University of Montréal, Montréal, Canada
Background & Aims: Hepatitis C virus (HCV) associates with
lipoproteins to form ‘‘lipoviral particles’’ (LVPs) that can facilitate
viral entry into hepatocytes. Initial attachment occurs via hepa-
ran sulphate proteoglycans and low-density lipoprotein receptor
(LDLR); CD81 then mediates a post-attachment event. Proprotein
convertase subtilisin kexin type 9 (PCSK9) enhances the degrada-
tion of the LDLR and modulates liver CD81 levels. We measured
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LVP and PCSK9 in patients chronically infected with HCV geno-
type (G)3. PCSK9 concentrations were also measured in HCV-G1
to indirectly examine the role of LDLR in LVP clearance.
Methods: HCV RNA, LVP (d <1.07 g/ml) and non-LVP (d >1.07 g/
ml) fractions, were quantified in patients with HCV-G3 (n = 39)
by real time RT-PCR and LVP ratios (LVPr; LVP/(LVP + non-LVP))
were calculated. Insulin resistance (IR) was assessed using the
homeostasis model assessment of IR (HOMA-IR). Plasma PCSK9
concentrations were measured by ELISA in HCV-G3 and HCV-
G1 (n = 51).
Results: In HCV-G3 LVP load correlated inversely with HDL-C
(r = �0.421; p = 0.008), and apoE (r = �0.428; p = 0.013). The LVPr
varied more than 35-fold (median 0.286; range 0.027 to 0.969);
PCSK9 was the strongest negative predictor of LVPr (R2 = 16.2%;
p = 0.012). HOMA-IR was not associated with LVP load or LVPr.
PCSK9 concentrations were significantly lower in HCV-G3 com-
pared to HCV-G1 (p <0.001). PCSK9 did not correlate with LDL-C
in HCV-G3 or G1.
Conclusions: The inverse correlation of LVP with apoE in HCV-
G3, compared to the reverse in HCV-G1 suggests HCV geno-
type-specific differences in apoE mediated viral entry. Lower
PCSK9 and LDL concentrations imply upregulated LDLR activity
in HCV-G3.
� 2014 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
Introduction

Deaths from hepatitis C virus (HCV) have now superseded HIV as
a cause of mortality in the United States and these deaths occur
disproportionately in middle-aged persons [1]. HCV genotype 3
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(HCV-G3) is the dominant genotype circulating in the UK and
Southern Asia, and is most commonly found in European intrave-
nous drug users [2]. Globally, it is estimated to account for 10–
15% of the total number of HCV infections [3]. Chronic HCV-G3
patients have been found to have higher rates of late-stage liver
disease and death [4], and HCV-G3 is now potentially the most
difficult-to-treat genotype [5], most notably in these patients
with decompensated cirrhosis.

HCV hijacks host lipid metabolism (reviewed in [6,7]) leading
to steatosis and hypocholesterolaemia, which resolves with suc-
cessful HCV treatment [8]. One striking feature of infectious
HCV particles is their buoyant density, which is unusually low
for an RNA virus [9], due to interaction with lipoproteins [10].
In patients’ sera, HCV particles are found associated with very-
low-density lipoprotein (VLDL) components (cholesterol, triglyc-
eride, apolipoprotein (apo) B, apoE and apoCs), forming hybrid
particles termed lipoviral particles (LVP). LVP can be immunopre-
cipitated with antibodies to apoB, apoE, and apoC1 [11,12]. ApoE
is enriched on infectious particles and correlates with infectivity
[13]; electron microscopy studies have visualised apoE on the
HCV envelope [14,15]. Recent cryoelectron tomography studies
have provided low-resolution 3D structural information on
highly infectious virions and have shown that LVP incorporate
apoB and apoA-I in addition to apoE [16].

Evidence has indicated that one function of HCV association
with lipoproteins is the co-opting of lipoprotein receptors for
attachment and entry into hepatocytes. The initial binding of
LVP to cells occurs via interaction with low-density lipoprotein
receptor (LDLR) and glycosaminoglycans present on heparan sul-
phate proteoglycans (HSPGs) [17] (reviewed in [18]). Both LDLR
and HPSGs can interact with virion-associated apoE [19,20].
CD81 then mediates a post-attachment event in HCV entry [21].

Proprotein convertase subtilisin kexin type 9 (PCSK9) is a pro-
tease made by the liver. PCSK9 normally acts to enhance the deg-
radation of the LDLR [22]. PCSK9 also modulates liver CD81 levels
[23]. The circulating concentrations of human PCSK9 are directly
correlated with LDL and total cholesterol concentrations in
healthy human volunteers [24,25]. Reducing the concentration
or activity of PCSK9 enables greater numbers of LDLR on the cell
surface, thereby increasing the clearance of LDL particles from the
circulation and reducing plasma LDL cholesterol. LDLR binds and
internalises LDL via its unique proteins, apoB100 and apoE.

We have previously measured low-density apoB-associated
LVP in patients with chronic HCV-G1 and found a positive associ-
ation with serum triglycerides, insulin resistance (IR) [26], and
serum apoE levels [27]. However, there is evidence that virus-
host interaction impacts on host lipid metabolism in ways, which
may be HCV genotype-specific [28–30]. Therefore, we have, for
the first time, examined LVP in the plasma of patients chronically
infected with HCV-G3. We have measured PCSK9 concentrations
in these patients and compared to patients chronically infected
with HCV-G1 [26] to indirectly examine the role of LDLR in LVP
clearance.
Patients and methods

Ethics

The Newcastle upon Tyne Hospitals NHS Foundation Trust acted as sponsor and
the study was approved by Northumberland Research Ethics Committee (REC
number-07/H0902/45).
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Patients

Patients with chronic hepatitis C (CHC), attending the viral hepatitis clinic at the
Freeman Hospital, Newcastle upon Tyne and St Mary’s Hospital, Imperial College
Healthcare Trust, London, were invited to participate and given a patient informa-
tion leaflet explaining the study. Both treatment naïve and previous non-respond-
ers to a combination of pegylated interferon-a and ribavirin (PegIFNa/RBV)
antiviral therapy were eligible for inclusion. Patients were excluded if they were
alcohol dependent, being treated with concurrent lipid lowering therapy, co-
infected with HBV, HDV, or HIV or had poor venous access due to injecting drug
use. Non-responders were also invited to participate in a separate lipid-modulat-
ing intervention study [31] which, in addition to the above, excluded participants
with a body mass index (BMI) P30. BMI was calculated as weight divided by the
square of the height (kg/m2). Thirty-nine patients with chronic HCV-G3 aged
>18 years, who provided written informed consent, attended after a 12 h fast
(fasting samples were essential in view of the post-prandial changes in buoyant
density of HCV particles [32] and assessment of IR). Twenty-six of 39 patients
were non-responders to PegIFNa/RBV. Eleven patients achieved a sustained viro-
logical response (SVR) and two patients were treatment naïve.

Clinical and laboratory assessment

Each subject was assessed for past alcohol intake and medication history and the
following data were collected: sex, age, weight, height, waist and hip circumfer-
ence. A fasting serum sample was collected for lipid analysis. Total cholesterol,
triglyceride (TG), HDL-cholesterol (HDL-C), and glucose were measured by stan-
dard automated enzymatic methods using an Olympus AU 640 analyser (Olym-
pus, Watford, UK). LDL cholesterol (LDL-C) was calculated using the Friedewald
equation [33]. Insulin was measured by immunoassay (ELISA – Dako UK Ltd,
Ely, UK) and assessment of insulin resistance was performed by calculation of
HOMA-IR using the formula: HOMA-IR = (fasting glucose [mmol/L] � insulin
[mU/L])/22.5). Apolipoproteins A-I, E and B were measured on each sample by
automated rate nephelometric methods (BNII, Dade Behring Marburg GmbH,
Marburg, Germany). ApoC-III was measured using a quantitative sandwich ELISA
(AssayMax – AssayPro, St. Charles, USA). Fasting plasma PCSK9 concentrations
were measured by ELISA [25], which was developed and validated in a group of
254 healthy individuals (the method is described in the Supplementary material).
In addition, we measured PCSK9 in a well-characterised HCV-G1 infected cohort
(n = 51) [26].

Iodixanol gradient ultracentrifugation

The LVP-containing fraction was harvested using a method described in the Sup-
plementary material and previously described [26].

Quantification of HCV RNA

The HCV RNA was quantitated using a method described in the Supplementary
material.

PCSK9 ELISA

Plasma PCSK9 concentrations were determined using a validated ELISA, using a
method described in the Supplementary material.

Statistical methods

All statistical methods used in this study are described in the Supplementary
material.
Results

Clinical characteristics of the patients with chronic HCV-G3

The physical and metabolic characteristics of the 39 patients with
CHC-G3 infection recruited in this study are summarised in
Table 1 and fully detailed in Supplementary Table 1. Ethnicities
5 vol. 62 j 763–770



Table 1. Characteristics of the patients with chronic hepatitis C virus genotype 3.

Characteristic HCV-G3 (n = 39) High LVP ratio (n = 20) p value*
Sex, n (M/F) 30/9 17/3 -
Age (yr), mean ± SD 48.2 ± 10.5 47.9 ± 6.8 0.86§

Liver stiffness ≥13 kPa, n (%)† 12 (30.8) 8.8 (9.1) 0.92¶

Waist (cm), mean ± SD 89 ± 10.1 89.8 ± 9.5 0.63§

Waist/hip ratio, median (IQR) 0.96 (0.08) 0.97 (0.06) 0.61¶

BMI (kg/m²), mean ± SD 25.3 ± 3.0 25.2 ± 2.6 0.92§

Cholesterol (mmol/L), mean ± SD 3.74 ± 0.90 3.73 ± 0.8 0.92§

LDL-C (mmol/L), mean ± SD 2.04 ± 0.67 2.2 ± 0.7 0.24§

TG (mmol/L), median (IQR) 0.85 (0.50) 0.86 (0.63) 0.88¶

ApoB (g/L), median (IQR) 0.60 (0.30) 0.7 (0.20) 0.07¶

HDL-C (mmol/L), median (IQR) 1.20 (0.68) 1.1 (0.60) 0.20¶

ApoA-I (g/L), mean ± SD 1.41 ± 0.35 1.35 ± 0.31 0.25§

TG/HDL-C ratio, median (IQR) 0.60 (0.66) 0.72 (1.19) 0.39¶

ApoC-III (µg/ml), median (IQR) 62.4 (55.22) 62.3 (57.9) 0.99¶

ApoE (mg/L), median (IQR) 30.0 (19.5) 28.5 (14.0) 0.39¶

PCSK9 (ng/ml), median (IQR) 60.7 (39.0) 50.4 (45.1) 0.04¶

Glucose (mmol/L), median (IQR) 5.20 (1.30) 5.2 (1.30) 0.92¶

Insulin (mU/L), median (IQR) 6.95 (5.62) 8.1 (5.90) 0.61¶

HOMA-IR‡, median (IQR) 1.53 (1.62) 1.62 (1.79) 0.64¶

HCV genotype, n (3a/3b/unknown) 27/1/11 14/0/5 -
Total viral load log10(IU/ml), median (IQR) 6.06 (0.78) 5.87 (1.03) 0.4¶

LVP load log10(IU/ml), mean ± SD 5.22 ± 0.90 5.53 ± 0.94 0.02§

Non-LVP load log10(IU/ml), mean ± SD 5.62 ± 0.86 5.42 ± 1.03 0.13§

LVP ratio, median (IQR) 0.286 (0.432) 0.50 (0.36) <0.001¶

ALT, alanine transaminase; BMI, body mass index; apoB, apolipoprotein B; apoA; apolipoprotein A-I; apoE, apolipoprotein E; apoC-III, apolipoprotein C-III; HDL-C, high-
density lipoprotein cholesterol; HOMA-IR, Homeostasis Model Assessments of Insulin Resistance; LDL-C, low-density lipoprotein cholesterol; LVP, lipoviral particle; PCSK9,
proprotein convertase subtilisin/kexin type 9; TG, triglyceride.
Parametric data is shown with plus-minus values, which are the means ± standard deviation. Non-parametric data is shown as the median value plus the interquartile
range.
⁄p values are for the comparison between high/low LVP ratios (LVPr). p <0.05 were considered significant. High LVP ratio (n = 20) is defined as greater than or equal to the
median value of 0.286.
�Liver stiffness measured by transient elastography using a Fibroscan™ machine with a standard probe [52]. A score P13.0 kPa represents cirrhosis [51].
�Assessment of insulin resistance was performed by calculation of Homeostasis Model Assessments of Insulin Resistance (HOMA-IR) from a fasting blood sample using the
formula: (fasting glucose (mmol/L) � fasting insulin (mU/L))/22.5.
§p value calculated using the parametric t test.
–p value calculated using the non-parametric Kruskal–Wallis test.

JOURNAL OF HEPATOLOGY
were self-reported: Caucasian (n = 31), South Asian (n = 3), Middle
Eastern (n = 2), East Asian (n = 1) and Mixed-other (n = 2; East/
South Asian). BMI was normal (<25 kg/m2) in 17 patients, over-
weight (25–30 kg/m2) in 21 patients, and obese (>30 kg/m2) in 1
patient. According to the criteria of the International Diabetes
Federation [34], 7 patients had metabolic syndrome. Of these, 2
patients were receiving treatment for type 2 diabetes mellitus.
The virological characteristics of the patient cohort are also sum-
marised in Table 1. The mean plasma HCV RNA viral load was
5.91 log10 (IU/ml) but ranged from 3.66 to 7.62 log10 (IU/ml).
The mean HCV RNA LVP load was 5.22 log10 (IU/ml). The mean
LVPr was 0.333, but varied widely between patients ranging from
0.027 to 0.969 and the median LVPr was 0.286.

Correlations between plasma viral load and metabolic factors

The relationship between host metabolic factors with specific
viral parameters (total viral load, LVP, and LVPr) was examined
using either Pearson’s or Spearman’s (r) rank correlation analysis.
Using Spearman’s rank correlation analysis, a number of meta-
bolic factors correlated with total viral load (Fig. 1). There was
Journal of Hepatology 201
a significant negative correlation between total viral load and
TC (Fig. 1A; r = �0.450; p = 0.004), LDL-C (Fig. 1B; r = �0.444;
p = 0.005), apoB (Fig. 1C; r = �0.352; p = 0.028) and apoA-I
(Fig. 1D; r = �0.409; p = 0.010). In multivariable stepwise regres-
sion analysis, many of the significant correlates identified inter-
acted, but after 3 rounds of backward elimination of the
weakest predictors, LDL-C was the significant independent deter-
minant of total viral load (R2 = 10.7%; p = 0.042). Thus, in HCV-G3,
the higher viral load, the lower the concentration of LDL-C.

Correlations between LVP and metabolic factors

The association of LVP load with metabolic factors was evaluated
with univariate correlation analysis (Fig. 2). LVP load correlated
negatively with HDL-C (Fig. 2A; r = �0.421; p = 0.008), apoA-I
(Fig. 2C; r = �0.394; p = 0.013), and apoE (Fig. 2E; r = �0.428;
p = 0.013). The comparison of these factors with LVP was further
evaluated by separating LVP load into high LVP (defined as above
the median value of 5.375 log10 HCV RNA (IU/ml)) and low LVP
(defined as below the median value of 5.375 log10 HCV RNA
(IU/ml)). High LVP load was associated with significantly lower
5 vol. 62 j 763–770 765
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HDL-C (Fig. 2B; 1.14 ± 0.40 mmol/L vs. 1.40 ± 0.46 mmol/L,
p = 0.047), apoA-I (Fig. 2D; 1.31 ± 0.32 g/L vs. 1.53 ± 0.34 g/L,
p = 0.044), and apoE (Fig. 2F; 29.8 ± 13.2 mg/L vs. 41.13 ±
19 mg/L, p = 0.020). Multivariable stepwise regression analysis
of the relationship between LVP load and these correlates
(with backward elimination of the weakest predictive factors)
showed that after two rounds HDL-C was the most significant
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determinant of LVP load (R2 = 17.8%; p = 0.008). Thus, in HCV-
G3 the higher the HDL-C the lower the LVP load.

Correlation between LVP ratio and metabolic factors

In patients with HCV-G3, neither LVP load (Supplementary
Fig. 1A, r = �0.029; p = 0.863) or LVP ratio (Supplementary
Fig. 1B, r = 0.010; p = 0.952) showed evidence of an association
with HOMA-IR. We found a negative correlation between LVPr
with PCSK9 in HCV-G3 (Fig. 3A; r = �0.478, p = 0.002) and the
correlation remained significant after excluding the two outliers
(r = �0.403; p = 0.015), whereas in HCV-G1, LVPr [26] trended
towards a positive correlation with PCSK9 (Fig. 3C, r = 0.267;
p = 0.058). In HCV-G3, regression analysis (this model excludes
unusual observations (outliers) with very high or very low PCSK9
concentrations) showed that PCSK9 concentration was a signifi-
cant independent predictor of LVPr (R2 = 16.2%; p = 0.012).

Stratification of LVP ratio into high and low LVP ratio

The comparison of clinical and metabolic variables in patients
with chronic HCV-G3 with a low LVPr (defined as below the med-
ian value of 0.286; n = 19) and those with a high LVPr (defined as
above the median value of 0.286; n = 20) is shown in Table 1. The
only significant difference between patients with a high or low
LVPr was found in PCSK9 concentrations (50.4 ng/ml vs.
76.3 ng/ml; p = 0.044) which is shown in Fig. 3B. Therefore, in
patients with chronic HCV-G3, we have shown that higher LVP
ratio is associated with lower PCSK9 concentration. We compared
the PCSK9 concentrations between high and low LVP ratios in the
HCV-G1 cohort and found that higher LVP ratios are associated
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and LVP ratio (r = 0.276; p = 0.058) in HCV-G1 and (D) boxplots showing the
relationship between plasma PCSK9 and high and low LVP ratio (98 ng/ml vs.
83.2 ng/ml; p = 0.05) in HCV-G1 patients.
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with higher PCSK9 concentrations (98.0 ng/ml vs. 83.2 ng/ml;
p = 0.05) (Fig. 3D).

PCSK9 concentrations are lower in HCV-G3 compared to HCV-G1

PCSK9 was measured in both the HCV-G3 and HCV-G1 infected
patients (n = 51; [26]) and compared to the PCSK9 concentrations
in HCV negative individuals (n = 254; [25]), Supplementary Fig
2A. PCSK9 concentrations were significantly lower in HCV-G3
patients compared to HCV-G1 (Fig. 2A; 73.8 ± 52.2 ng/ml vs.
96.1 ± 28.7 ng/ml; p <0.001). PCSK9 concentrations were also sig-
nificantly lower in HCV-G3 patients compared to HCV negative
individuals (Fig. 2A; 73.8 ± 52.2 ng/ml vs. 89.4 ± 31.9 ng/ml;
p = <0.001). The concentration of PCSK9 in HCV-G1 patients was
found to be significantly higher than in HCV negative subjects
(Fig. 2A; 96.1 ± 28.7 ng/ml vs. 89.4 ± 31.9 ng/ml; p = 0.049).
Although the PCSK9 concentrations were relatively low in HCV-
G3, given the low concentrations of LDL-C, the plasma PCSK9
and PCSK9/LDL-C ratio were somewhat higher than expected. In
HCV-G3, the PCSK9/LDL-C ratio was 43.9 ± 46.3 and HCV-G1
39.9 ± 19.9, compared to 33.2 ± 12.9 in 254 HCV negative individ-
uals. There were no statistically significant differences between
the groups as shown in Supplementary Fig. 2B. The differences
remained insignificant after exclusion of the two HCV-G3 outliers
with very high PCSK9 concentrations and PCSK9/LDL-C ratios
(36.4 ± 18.7 vs. 39.9 ± 19.9; p = 0.264).

Using univariate correlation analysis, we found that PCSK9
concentrations did not correlate with either total cholesterol or
LDL-C in either HCV-G1 or HCV-G3 infected patients, which is
in contrast to the HCV negative subjects, where a correlation
was found between the PCSK9 concentrations with either total
or LDL cholesterols (Fig. 4). The relationship between PCSK9 con-
centrations and biomarkers of liver inflammation, e.g., ALT, AST
and GGT were also evaluated (Supplementary Fig. 3). It is
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noteworthy that the two PCSK9 outliers with very high PCSK9
concentrations were found to have low LDL-C and much higher
liver stiffness measurements (>13 kPa), as determined by tran-
sient elastography.
Discussion

In chronic HCV infection, viral load is not a useful prognostic indi-
cator of the severity of liver disease [35] and is influenced by a
large number of demographic, viral, and human genetic factors
[36]. In this study of HCV-G3 patients, we found that LDL-C was
a significant determinant of total viral load; i.e., higher viral load,
lower LDL-C. It has previously been shown that liver steatosis is
independently associated with HCV-G3 [37] and that steatosis
correlates with lower LDL-C and hypobetalipoproteinaemia [38].
In addition, steatosis grade correlates with higher viral load [39],
and steatosis is a predictor of virological relapse to antiviral therapy
in HCV-G3 [40]. Our finding emphasises the link between HCV-G3
replication, steatosis, viral load, and LDL-C. This suggests that LDL-
C should be included in the parameters examined as predictors of
virological relapse in the era of direct acting antivirals [41].

The poor correlation between viral load and disease severity
in chronic HCV could be partially explained by the increasing evi-
dence that not all of the HCV RNA is equally infectious. Infectious
HCV particles have a low buoyant density, due to interaction with
lipoproteins to form hybrid lipoviral particles [10] that can facil-
itate virus entry into hepatocytes (reviewed in [18]). This is the
first study to quantitate LVP in the plasma of patients with
HCV-G3, and a striking finding is that LVP load is negatively cor-
related with apoE; i.e., higher LVP load, lower serum apoE. This
might seem surprising, as LVP can be immunoprecipitated with
anti-apoE [11,42] and apoE is enriched on the surface of HCVcc
[15]. There is also evidence that apoE mediates attachment of
clinical HCV to hepatocytes by binding to cell surface heparan
sulphate proteoglycan receptors [20]. Our finding in HCV-G3 is
the opposite of HCV-G1, where we showed that LVP load posi-
tively correlates with apoE [27]. One interpretation of our oppos-
ing findings in HCV-G3 vs. HCV-G1 is that apoE is depleted by
LDLR-mediated uptake of LVP, thereby mediating viral entry into
hepatocytes in HCV-G3 in vivo.

In this study, we found that the most significant determinant
of fasting LVP load in G3 is HDL-C; i.e., higher HDL-C, lower LVP
load. We have previously shown that HCV particles in the serum
exhibit post-prandial shifts in buoyant density [32], moving on to
very-low-density apoB-associated triglyceride-rich lipoproteins
(TRLs) after a fatty meal. The reciprocal relationship between
HDL-C and LVP found in HCV-G3 infection suggests slower clear-
ance of HDL-bound HCV RNA containing particles retained in the
higher density fraction.

LVP load in HCV-G3 did not correlate with insulin resistance
as measured by HOMA-IR, unlike HCV-G1 [26]. Insulin plays a
central role in coordinating lipoprotein metabolism and pro-
motes the uptake of TRL remnant particles [43,44], however,
insulin resistance is associated with overproduction of TRLs.
Our finding in HCV-G3 vs. HCV-G1 again implies genotype-spe-
cific differences in the regulation of the pathways of TRL produc-
tion and TRL remnant clearance, the latter being more important
in HCV-G3 compared with HCV-G1.

This is also the first report of PCSK9 concentrations in HCV
patients. PCSK9 regulates recycling of the LDLR and plasma
PCSK9 concentrations normally correlate inversely with LDLR
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Fig. 4. Relationship between plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) levels and serum total and LDL-cholesterol in HCV-G1 (n = 51; [26]), HCV-
G3 (n = 39) and non-HCV infected subjects (n = 254; [25]). (A) PCSK9 does not correlate with total cholesterol in HCV-G1 (r = �0.117; p = 0.415), (B) PCSK9 does not
correlate with LDL-C in HCV-G1 (r = �0.245; p = 0.083), (C) PCSK9 does not correlate with serum cholesterol in HCV-G3 (r = �0.039; p = 0.818), (D) PCSK9 does not correlate
with serum LDL-C in HCV-G3 (r = �0.122; p = 0.466), (E) PCSK9 correlates with total cholesterol in 254 non-HCV infected study participants (r = 0.382; p = <0.001) and
(F) PCSK9 correlates with LDL cholesterol in non-HCV infected individuals (r = 0.352; p = <0.001).
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expression, hence positively with plasma LDL-C concentrations in
healthy individuals [45] (reviewed in [22,46]). We found that
plasma PCSK9 did not correlate with total cholesterol or LDL-C
in HCV-G3 and HCV-G1 patients, indicating disruption of lipid
homeostatic mechanisms by HCV. PCSK9 concentrations were
significantly lower in HCV-G3 vs. HCV-G1. In apoB kinetic studies,
fasting PCSK9 concentrations correlate inversely with apoB frac-
tional catabolic rate; i.e., lower PCSK9 is associated with high
LDL clearance via LDLR [47]. Thus, a lower PCSK9 concentration
in HCV-G3 supports the concept that chronic HCV-G3 is charac-
terised by increased clearance of both LDL-C and LVP mediated
by LDLR. It also implies that increased clearance of apobetalipo-
proteins contributes to the hypobetalipoproteinaemia found in
HCV-G3. Our findings suggest that HCV-G3 acts in an analogous
manner to statins in that higher viral replication correlates with
lower LDL-C and apparent upregulation of LDLR. This would nor-
mally be counteracted by upregulation of PCSK9 mediated
homeostatic mechanism(s), and increased PCSK9 concentrations,
as seen in statin treatment. Studies of the relationship between
apoB kinetics and markers of sterol synthesis and absorption
are needed in patients with chronic HCV, to elucidate the mech-
anism underlying these findings and to confirm that the low apoB
concentrations, particularly in chronic HCV-G3, are not primarily
due to decreased apoB production, as has been assumed as a con-
sequence of MTP inhibition [48]. However, it must be emphasised
that the undertaking of such demanding studies is fraught with
difficulty in this patients’ group. This study also highlights that
the use of PCSK9 inhibitors may be hazardous in this patients’
group as they could further increase LDLR mediated LVP uptake
and enhance the severity of infection in HCV-G3.

In summary, the difference in LVP correlations in HCV-G3
compared to HCV-G1 [26,27] suggests important differences in
HCV entry for these 2 genotypes. ApoE-mediated entry via LDLR
may be more dominant in HCV-G3 whereas apoE-mediated
768 Journal of Hepatology 201
clearance via the SR-B1 pathway could be more important
in vivo for HCV-G1 infection. This would mean that statins may
be more beneficial as adjunct therapy in HCV-G1 rather than
HCV-G3, as has been reported in a recent study [49]. The geno-
type–specific differences in lipoprotein interactions found
in vivo in this study are likely to be of relevance, not only for
blocking viral entry, but also for designing approaches to target-
ing host lipid pathways as adjunctive therapy [50].
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