363 research outputs found

    Stable density stratification solar pond

    Get PDF
    A stable density-stratification solar pond for use in the collection and storage of solar thermal energy including a container having a first section characterized by an internal wall of a substantially cylindrical configuration and a second section having an internal wall of a substantially truncated conical configuration surmounting the first section in coaxial alignment therewith, the second section of said container being characterized by a base of a diameter substantially equal to the diameter of the first section and a truncated apex defining a solar energy acceptance opening is discussed. A body of immiscible liquids is disposed within the container and comprises a lower portion substantially filling the first section of the container and an upper portion substantially filling the second section of the container, said lower portion being an aqueous based liquid of a darker color than the upper portion and of a greater density. A protective cover plate is removably provided for covering the acceptance opening

    Thermal analysis of antenna backup structure. Part 1. Methodology development

    Get PDF
    An analytic method was devised to predict the temperature distribution in typical antenna structural back-up members. The results are in agreement with those obtained by a numerical shooting method. The analytic method shows potential in simplifying the thermal analysis process for complex back-up antenna structures

    Rates of solar angles for two-axis concentrators

    Get PDF
    The Sun's position by the azimuth and elevation angles and its rate of change at any time of day are determined to design 2 axis tracking mechanisms of solar concentrators. The Sun's angles and their rates for selected months of the year (March, June, September and December) and for seven selected atitudes (0, + or - 30, + or - 60, + or - 90) covering both the northern and southern hemispheres were studied. The development of the angle and angle rate analytical expressions for any month, hour of day, and latitude provides the solar concentrator designer with a quantitative determination of the limiting Sun's position and angle rates for an accurate automatic tracking mechanism

    The Feasibility of the Disturbance Accommodating Controller for Precision Antenna Pointing

    Get PDF
    The objective of this study is to investigate the feasibility of a pointing (position loop) controller for the NASA-JPL Deep Space Network (DSN) antennas using the Disturbance Accommodating Control (DAC) theory. A model that includes state dependent disturbances was developed, and an example demonstrating the noise estimator is presented as an initial phase in the controller design. The goal is to improve pointing accuracy by the removal of the systematic errors caused by the antenna misalignment as well as sensor noise and random wind and thermal disturbances. Preliminary simulation results show that the DAC technique is successful in both cancelling the imposed errors and maintaining an optimal control policy

    Antenna pointing systematic error model derivations

    Get PDF
    The pointing model used to represent and correct systematic errors for the Deep Space Network (DSN) antennas is presented. Analytical expressions are given in both azimuth-elevation (az-el) and hour angle-declination (ha-dec) mounts for RF axis collimation error, encoder offset, nonorthogonality of axes, axis plane tilt, and structural flexure due to gravity loading. While the residual pointing errors (rms) after correction appear to be within the ten percent of the half-power beamwidth criterion commonly set for good pointing accuracy, the DSN has embarked on an extensive pointing improvement and modeling program aiming toward an order of magnitude higher pointing precision

    The transient thermal response of a tubular solar collector

    Get PDF
    A special analytical solution is provided for the timewise response of the circulating fluid temperatures when a sudden step change of the input solar radiation is imposed and remains constant thereafter. An example which demonstrates the transient temperatures at the exit section of a single collector with two different flow patterns is presented. This study is used to supplement some numerical solutions to provide a fairly complete coverage for this type of solar collector

    Structural design options for the new 34 meter beam waveguide antenna

    Get PDF
    In addition to the successful network of 34 m High Efficiency antennas recently built by JPL, the Deep Space Network (DSN) is embarking on the construction of a 34 m high performance, research and development antenna with beam waveguide optics at the Venus site. The construction of this antenna presents many engineering challenges in the area of structural, mechanical, RF, and pointing system design. A set of functional and structural design requirements is outlined to guide analysts in the final configuration selection. Five design concepts are presented covering both the conventional center-fed beam optics as well as the nonconventional, by-pass beam configuration. The merits of each concept are discussed with an emphasis on obtaining a homologous design. The preliminary results of structural optimization efforts, currently in progress, are promising, indicating the feasibility of meeting, as a minimum, all X-band (8.4 GHz) requirements, with a goal towards meeting Ka-band (32 GHz) quality performance, at the present budget constraints

    JPL Energy Consumption Program (ECP) documentation: A computer model simulating heating, cooling and energy loads in buildings

    Get PDF
    The engineering manual provides a complete companion documentation about the structure of the main program and subroutines, the preparation of input data, the interpretation of output results, access and use of the program, and the detailed description of all the analytic, logical expressions and flow charts used in computations and program structure. A numerical example is provided and solved completely to show the sequence of computations followed. The program is carefully structured to reduce both user's time and costs without sacrificing accuracy. The user would expect a cost of CPU time of approximately $5.00 per building zone excluding printing costs. The accuracy, on the other hand, measured by deviation of simulated consumption from watt-hour meter readings, was found by many simulation tests not to exceed + or - 10 percent margin

    A 32-GHz phased array transmit feed for spacecraft telecommunications

    Get PDF
    A 21-element phased array transmit feed was demonstrated as part of an effort to develop and evaluate state-of-the-art transmitter and receiver components at 32 and 34 GHz for future deep-space missions. Antenna pattern measurements demonstrating electronic beam steering of the two-dimensional array are reported and compared with predictions based on measured performance of MMIC-based phase shifter and amplifier modules and Vivaldi slotline radiating elements
    • …
    corecore