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Abstract

This article is a continuation and an extension to the previous work covered

in Ref. (1) that deals with the thermal behavior of a tubular solar collector.

A special analytical solution is provided for the time-wise response of the

circulating fluid temperatures when a sudden step change of the input solar

radiation is imposed and remains constant thereafter. An example which demon-

strates the transient temperatures at the exit section of a single collector

with two different flow patterns is presented. This study is used to supple-

ment some numerical solutions to provide a fairly complete coverage for

this type of solar collector.
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The Transient Thermal Response of a Tubular Solar Collector

Introduction

The study of transition states in the performance of solar collectors is

becoming increasingly important with the new introduction of solar module con-

.	 trol techniques. The temperature control versus the circulating fluid rate,

for example, is directly related to the transient behavior of the module at

specific input conditions of solar irradiancy, ambient and inlet fluid temp-

eratures.

In order to study the transient performance of any heat exchanger, a

sufficiently general analytical model must be established which is both an ade-

quate idealization of the physical system and capablr of reasonably simple

mathematical description. There are basically three common methods in the

literature for solving the transient performance problem. These are classified

as: an analog computer method, a numerical method, and an analytical method.

The choice of the method to be used depends on the complexity and size of the

problem, the accuracy required, the means available, and the experience of the

investigator. First, analog computer methods (Ref. 3, 4 & 5) provide

a realistic and accurate analog model of the physical system, but require

a significant amount of advanced electrical circuitry. Second, numerical

solution, employing the practical method of finite differences has become in-

creasingly popular with the availability of high speed digital computers and

its associated technology. This technique is very useful for almost any heat

exchanger problem, and is the only method that can be used if a high degree of

accuracy is required or if the problem at hand is of considerable size and com-

plexity. One using this method has to solve algebraic equations (nodal equations)

instead of the partial differential equation. The nodal equations can be derived
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by purely mathematical methods or by energy considerations. Third, analytical

methods, as evident from Ref. 2, present in general a substantial mathematical

complexity. However, a special case has been found for tubular solar collectors

which can be handled by standard procedures and this is the subject of this

article. The analytic solution of the transient behavior can later be used

to supplement the numerical solutions so as to provide adequate coverage for

this type of solar collector.

Collector Description and Flow Patterns

The tubular collector, as shown schematically in Figures 1 and 2, is com-

posed of three concentric tubes; an inner tube, an absorber tube, and a cover

tube. The annulus space between the absorber and cover tubes is highly evacu-

ated to minimiza convection and conduction losses. The absorber tube surface is

coated with a selective material to reduce the outward long-wave radiation losses.

In flow pattern (1), as shown in Figure 1, the circulating fluid starts from the

inlet section of the inner tube. At the closed end of the collector, the fluid

reverses its direction and passes in the annulus spacing between the inner and

absorber tubes. In flow pattern (2), as shown in Figure 2, the fluid path is

reversed from the abov , . Both flow patterns alternate in each collector module

as shown in Figure 3. For more irradiancy augmentation, the set of collectors is

mounted with lateral spaces separating them from each other with a highly reflec-

tive back reflector.

Assumptions and Analysis

It is widely recognized that the analysis of the transition states of heat

exchangers does not respond to an easy mathematical treatment, and that simpli-

fying assumptions are necessary in order to achieve any type of solution.

2	 JPL Technical Memorandum 33-781
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The following idealizations are made in the model to yield a transient

solution with an accuracy adequate for engineering purposes:

1 - The heat flux and the temperature t;F each of the fluids and the walls

are functions of both time (9) and axial distance (X) from the collec-

tor inlet. This makes the problem one dimensional.

2 - The densities and specific heats are constants throughout the system.

3 - The thermal conduction of the tubes' material is assumed zero in the

axial direction parallel to the flow and is considered infinite in the

radial direction.

4 - The heat transfer coefficient between any tube surface and its adjacent

fluid is uniform and constant over the axial direction for a fixed

fluid flow rate.

5 - The heat transferred at any section due to the fluid thermal conduc-

tivity in the axial direction, within the fluid, is negligible compared

to other heat fluxes from or to the fluid at the same section.

6 - The heat capacitance of the three tubes of the collector, namely the

inner, the absorber and the cover tube, are negligible relative to the

heat capacity of the fluid. This is a good simplifying assumption if

a liquid is used as the circulating fluid in the collector. In case of

using gases or air as the solar collector medium, this assumption is not

recommended since the wall capacitance has large effects on the thermal

lag.

7 - Initially, steady state conditions were prevailing before a sudden input

variation in the solar radiation was superimposed.

8 - The fluiu flow rate is cons*ant throughout the collector.

9 - Passes (1) and (2) of the inner and outer fluid, respectively, are of

equal flow area; thus equal flow velocities in each pass are assumed.

JPL Technical Memorandum 33-781
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Virtually all of these idealizations are also required for the

analysis of the steady state performance.
i

Based upon these idealizations, the differential equations relating the

system temperatures are derived from energy balance and heat transfer rate

equations applied to a segment of the collector of length dx. The derivation
,U.r these'differential equations is presented in Appendix A. The incident

solar radiation is then applied in the form of an input step function. The

transient problem for both flow patterns is then mapped on the frequency domain

instead of the,time domain by using Laplace transformation as explained in

Appendix B. In Appendix C, the inverse Laplace transformation is presented using

the Residue theorem in complex number algebra, for one of the two flow patterns,

namely pattern (1). A similar approach is followed for flow pattern (2) and is

presented separately in Appendix D.

Numerical Example

The following numerical example will show the difference in the thermal

response between the two flow patterns of the tubular solar collector The

data were arbitrarily abstracted to be as close as possible to actual running

7	 conditions. However, the conclusions may be generalized at any other relevant

conditions.

Starting with inlet water temperature

Ti(0,0) = 700c for flow pattern (1)

or

To(0,0)	 700  for flow pattern (2)

4	 JPL Technical Memorandum 33-781
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Ambient temperature .	 .	 .	 . 3000

Tube length	 .	 .	 .	 .	 , 1.067m

Absorber tube diameter 0.041m

Cover tube transmissivity 0.91

Absorber tube absorptivity 0.85

Mass	 flow rate.	 ,	 .	 .	 .	 . 5 Kg/hr

Water specific heat 	 .	 .	 .	 . 11.63 x 104 Kwhr/KgoK	 ,

Sky temperature	 .	 .	 .	 .	 .	 , 40c

seeder tube diameter	 .	 r	 . 0.029m

Cover tube diameter	 .	 .	 .	 . 0.051m

Cover tube emissivity	 .	 .	 . 0.90

Absorber tube emissivity, 	 . 0.1

Wind	 speed	 ..	 .	 .	 ,	 .	 .	 .	 . 11	 Km/hr

Augmentation factor .	 .	 .	 , 1.64

Irradiation intensity varies in the .form of a step function and is given by

I=0 .9<0

11.75 Kw/m2	0 < B	 <

The relevant constants K l , K3 , K4 (9) were calculated from Eqs. A-20 & A-23 using

the heat transfer coefficients data (Ref. 	 6):

K1 = 0.8853	 m 1 K4 =5.0869

{(

9 < 0	 o K/m

K3 = 0.9024	 m 1 113.4406 O: 9 < q3	 oK/m

A K4 (9=0) = 8.3537	 oK/m

C =	 (K3 -K1 )	 = 0.0085495
2

V i =Vo=V=7.5698 m/hr

Since the initial conditions were at steady state, Equation B-9 was solved as

in Ref.	 (1) and gave the difference [TO (0,0) - T i (0,0)] as -0.818 OK



The first six vectors Z in Equation C-17 and the corresponding poles p are

calculated as:

Z = + 1.8274i	 ,	 p = -5.N-55

Z 2.1065 + 7.5750 j	 p = 14.4634 + 26.0865 j

Z = 2.7063 + . 13.9438 j	 p = -164'4525 --7-49.0227 j

Z = 3.0754 + 20.2691 j 	 p = -17.7222 + 71.5935 j	 }

Z = 3.3437 + 26.5781 j., 	 p = 18.6569 + 94.0439 j 	
Y

Z	 3.5548 + 32.8788 j ,	 p = -19.3968 + 116.4385 j

The first six poleg constitute 97% of the infinite series sum required for flow

pattern (1) and are sufficient for temperature calculations. For flow pattern (2)

many more transition terms are required for calculations in the vicinity of the

(A = 0) region. These extra terms will have a very rapid diminishing effect as

A>0.1 hr.

The temperature T
0
 (0,9), from Equation C-16, for flow pattern (1) is given

by:
-5.0655 9	

3

T
0
 (0,9) = T

0
 (0,0) + 8.7826 - 6.5290 e

-14.4634 A

	

+2.7288 e	 . cos(2.1593 + 26.0865 A)

-16.4525 A

	

+0.4480 a	 cos(1.5462	 49.0227 9)

-17.7222 8	 l

	

+0.5363 a	 cos(2.3276 + 71.5935 A)

18.6569 A

	

+0.1964 a	 cos(1.2973 - 94.0439 A)

19.3968 A

	

+0.2447 a	 cos(2.3688 + 116.4385 81)

6	 JPL Technical Memorandum 33-781
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-18.6569 9
+0.6108 a	 cos(i.8797 - 94.0439 0)

-19.3968 9
+0.6429 a	 cos.0.6005 - 116.4385 9

The outlet temperatures are plotted as shown in Fig. 4 f

trend of the two outlet temperature curves is the same f

flow rate, ambient temperature or solar irradiancy.

JPL Technical Memorandum 33-781

and that for flow pattern (2), from Equation D- 9,.is given by:

-5.0655 e
T i (0,9) = T i (0,0) + 8.7826	 - 14.6569	 e

-14.4634 9

	

+2.9974 a	 cos(1.7492 - 26.0865 9)

-16.4525 9

	

+1.0818 a	 cos(2.0444 - 49.0227 9)

-17.7222 9

	

+1.0681 a	 rns(1.6352 - 71.5935 9)



Summary and Conclusions

To summarize the major features of this work the following conclusions

are made:

I	 A pure analytic procedure using Laplace transform has been established

for the transient thermal solution of the tubular solar collector with

two different flow patterns. The input solar flux is introduced in the

form of a step function and the resulting collector response is pre-

sented in each case. The numerical results of a selected example are

plotted in Fig. 4 for comparison.

2	 Comparison of the exit temperature_frgm the collector, Figure 4, indicates

the distinct difference in responding to a sudden change of solar radiation.

The outlet fluid temperature of flow pattern (1) responds by a much faster

rate in the early stages since the fluid leaves the collector as soon as y

it absorbs the useful energy from the annulus area facing the sun. On

	

	 1
i

the other hand, the fluid temperature of flow pattern (2) lags behind by

the "residence time. The latter is the time elapsed for an element of

fluid to pass through the collector from the inlet section to the end

section. The residence time 9s is given by

s,

and _i is equal to 8.46 minutes for this example. This means that approx*

imately 8 minutes have to elapse to discharge the relatively colder
9

Fluid in the center tube before a significant temperature gain is ob-

served for flow pattern (2).

3	 The steady state collector analysis, described in Ref-. (1), leads to

the conclusion_ that both flow patterns, though having different tempera-

ture distribution inside each tube, will eventually end up with the same

steady state outlet fluid temperature. Since the temperature growth for

JPL Technical Memorandum 33-781
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flow pattern (2) is lagging behind that of flow pattern (1) and catch-

ing up at some infinite time, the rate of temperature increase for flow

pattern (2), at the end of the "residence" time has to be much faster

than the early rate of response for flow pattern (1).

4 - The steady Mate time registered experimentally by the collector manu-

facturer and by the solar simulator team at NASA Lewis Research Center

for this collector type, ranged from 30 to 60 minutes according to flow

rates, ambient and solar flux conditions. This relatively long steady

state time is due to the fact that 65% of the collector volume is filled

with liquid fluid that hinders a fast response. The analytic results

of the given example seem to agree with the above finding; the outlet

fluid temperature reached 97% and 92.5% of its steady state value for

flow patterns (1) and (2), respectively after 40 minutes of exposure to

sudden solar radiation.

5 - The series solution presented in this work depends entirely on the para-

meters Kl , C, L and V which in turn depends on the physical dimensions of

the collector, the heat transfer coefficients and the fluid flow rate.

With fixed collector dimensions, the hijh-, r the rate.of fluid flowing in,

the higher the conductance coefficients and the faster the response to

solar flux changes will be,even though the useful temperature rise across

the collector will decrease. On the other hand, with a fixed fluid flow

rate, the smaller the area of the flow passaga and the collector size, the

higher the fluid velocity, the higher the conductance coefficients and

the faster the rate of heating will be y since a smaller amount of liquid

is residing inside the collector.

JPL Technical Memorandur• 33-781 	 9	 -



6 - The analytic solution can now be applied to different input conditions

of flow rate, solar flux, ambient temperature or collector dimensions

for optimizing the collector performance. Moreover, other step changes

of the solar flux, such as sudden shading due to clouds passing by and

their effects on the collector cooling rate, could be followed by the

same expressions derived herein.

In conclusion, it should be pointed out that the analytic solutions obtained

in this article could be handled with a digital computer to give adequate cov-

erage for this type of solar collector,

10	 JPL Technical Memorandum 33-781
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Nomenclatures

Acs cross sectional	 area m2

C specific heat of tube material Kwhr/Kg c

C 
specific heat of flowing fluid. Kwhr/Kg°c

D Tube diameter m

F Augmented Radiation Factor -:2:1

I Direct incident solar radiation Kw/m2

'	 ^	 u

L tube length m

m fluiu mass flow rate Kg/hr

p Laplacian frequency

r reflectivity

7 Transformed temperature on frequency domain

T Temperature °K

Tsky Sky temperature °K

`	 Tamb,
Ambient temperature °K

Uac
Radiative heat transfer coefficient between the absorber and the

cover tubes Kw/m20c

Uao Overall heat transfer coefficient between the absorber tube and

the outer fluid in the annulus Kw/m20c

Ucv convective heat transfer coefficient between the cover tube and

the amb;ent, air Kw/m20c

UOI overall heat transfer coefficient between the outer fluid and

the Inner fluid Kw/m20c

Urd Radiative heat transfer coefficient between the cover tube

and sky. Kw/m2oc

V Fluid velocity. m/hr

Y, Distance along the collector tube m

JPL Technical Memorandum 33-781 11
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F

8	 Time

a	 absorptivity

e	 emissivity
3

r	 transmissivity of cover tube

S	 tube thickness

Cr	 Stefan Boltzmann constant
a

P	 density

Subscripts

a	 absorber

L	 cover tube

i	 inner fluid, pass(1)

0	 outer fluid, pass (2)

i i.

,.I

i

i

12	 JPL Technical Memorandum 33-781
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at time 0
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Appendix A

Derivation of the system differential Equations for the Transient Solution

For a segment of the collector of length dx at the time interval from 0 to

(0+d0), the rate of heat flux is divided, as shown in Figure A-1, whereby

dQ l = The total radiation on the cover tube from all sides including

irradiancies from the back reflector and reflections from adjacent

collectors:

dQ l - I	 F . (D cdx)	 . . .(A-1)

dQ2 = The total outward reflection loss from all sides of the cover

tube,

dQ3 	= the energy absorbed by the cover tube including absorption from

multiple reflections within the evacuated space

dQ3 = ( ac + ^cr^) .dQ l
ca

(A-2)

dQ4 	= the energy absorbed by the absorber tubo including absorption from

multiple reflections within the evacuated space,

dQ4 = ( -rT era ) dQl
(A-3)

dQ5 	= the long-wave radiation exchange between the cover and the absorber

tubes.	 This is absorbed by the cover tube almost entirely.

dQ5 = lac	 (7rDa .dx)	 (Ta -Tc) .	 . .(A-4)

where
4
-Tc4(Ta)

Uac =	 0-.	 Eac	 '(Ta-Tc)

.	 . .(A-5)

1 1	 Da+	 (^ - 1 )
Eac Ed 	 Dc

dQ6 = the sensible heat gain by the absorber tube material

dQ6 = 7r Da . S a . dx . a . C a ( aTa)	 (A-6)
ae

JPL Technical Memorandum 33-781	 17
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dQ7 = The heat transfer to the outer fluid in the ann,ilus pass from

the absorber tube surface

= 
Uao	 '	 (irDadx)	 .	 (Ta -To )	 .	 . .(A-7)

dQ8 	= The combined radiation and convection loss from the cover tube

to the ambient air and sky.

dQ8 = (7r Dc.dx)	
LUcv(Tc-Tamb) + Urd (Tc -Tsky ) , .(A-8)

where

Urd =	 (r.	 ec .(	 c	 sky	 .	 . .(A-9)

(Tc - Tsky

dQg 	= The sensible heat gain by the cover tube material.

dQ g = Tr Dc bc .dx. Pc . Cc (C )	 .	 . . (A-10)

dQ1D = The sensible heat gain by the outer fluid in the annulus pass.

This is determined by the "Lagrangian" approach following the

elementary fluid mass as it passes by the section bounded by X

and (X + dx) during the time interval from 9 to (9 + d9)

dQ 1D =	 [Acs.2	 Pf' Cf
.
	 ( a To ) +	 fi C

f ( a To ) ]	 dx .(A-11)
ax

where the (-) sign is for flow pattern	 (1) and the (+) sign for flow

pattern	 (2).

dQ11 	= The heat transfer to the inner fluid,

doll 	= U` ;	 ( n D i dx).(To -T i )	 .	 . .(A-12)

dQ12 = The sensible heat gain by the inner fluid, pass 	 (1).	 This is

determined, as in dQ10 , by following the elementary fluid mass as

it passes by the section bounded by X and (X + dx) during the time

interval from	 a to (9 + d9),

dQ12 = IAcs.l. P
f .Cf . (aX1 ) +	 ih Cf (-5-	 )]	 dx	 . .	 .(A-13)

18	 APL Technical Memorandum 33-781
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where the (+) sign is for flow pattern (1) and the (-) sign for flow

pattern (2).

and

dQl , = The sensible heat gain by the inner tube material.

Applying the first law of thermodynamics to the system componets will

yield:

dQ3 + dQ5 - dQ8 - dQ9 = 0	 . . .(A-14)

for the cover tube,

dQ4 - dQ5 - dQ6 - dQ7 = 0	 . . .(A-15)

for the absorber tube,

dQ7 - dQ10 - dQll	 = 0
	 . . .(A-16)

for the outer fluid, and

dQll - dQ12 - dQl3	 = 0
	 .(A-17)

for the inner fluid.

In this work, it has been assumed, without great loss of accuracy, that the

heat capacitance of the three tubes of the collector are negligible relative to

that of the liquid fluid. Accordingly, the number of differential equations

decreases to two instead of four since

dQ6	dQ9	dQ13 = zero	 . . .(A-18)

and equations A-14 and A-15 are reduced to:

[ec + oc rT a
r r) .I.F.(Dc dx)] + [(zrDadx)•Uac .(Ta - Tc)]
ac

70 dx [ 0 ' (.Tc - Tamb) + Urd (Tc - Tsky) J = 0

[(T a—• r r)	 I.F.(Dcdx)] - [('rDadx) . Uac (Ta-TC)] -
ac

- [(Tr Dadx).Uao .(Ta -To )]	 = 0

JPL Technical Memorandum 33-781	 19
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These can be written as:

Tc ^a+bTa

Tc a fTa - (f-1)To - 9

where a b, f & g are characteristic constants given by;

[
( c + 

ac r  Tc
T r,rc ) V I + ( Ucv' Tamb + Urdrsky)J

a=

Ucv + Urd + (ua . Uac )
c

( Da 	 Uac)	 . . .(A-20)

b=	
c

(Ucv + Urd + a ' Uac
b	

)
c

f = (1 + U 	 )	 g = F.I	 `^a Tc l

Uac	 R (Uac. 

D 

a) (1-rare
)c

On the other hand, Equations A-16 and A-17 will become the twc governing-

differential equations written as

LUao .(7rDadx).(Ta-T0)]-1Uoi(7rDidx)(To-Ti)]-

aTo _	 aTd
- LAcs.2 Pf Uf29 + [hUf ax ] dx = 0

where the (-) sign is for flow pattern (1) and the (+) sign for flow pattern (2),

aT.	 aT.

L Uoi ( irD i dx)(To -Ti )] - L Acsl Pf Of o a9-) + d, Of(-FX-IL)] dx = 0

where the (+) sign is for flow pattern (1) and the (+) sign for flow pattern (2).

The continuity (mass conservation) equation is expressed as

;h = Pf Acsl' V i	 Pf Acs2'VO	 . .(A 7 )

20 JPL Technical Memorandum 33-781
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f
c

:id toguther with Equations A-19 and A-20, the simultaneous partial differential

equations governing the thermal behavior of the tubular solar coilestor are

expressed as:

a Ti	 1	 a Ti
± ax + Pi --y- + 11 Ti - 11 To = 0

aTo	
1	

aTo	
.(A-22)

±-— - Pow +K1T1-K3To+K4=0

where

K 	
7rD

i boi	 _ 7rDAD
1 - fi C fK2	 ih Cz

K	 - K + K (1-b)
	 (A-23)

3 - 1	 2 f-6

a+
K4 = K2 ()

the (+) sign is for flow pattern (1) and the (-) sign is for flow pattern (2).
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Appendix B

Transformation of the differential equations from the time domain to the

frequency domain.

The partial differential equations that govern the collector inner and

outer fluid temperatures T i (X, 9) and To (X, 8), respectively, are expressed as

aT i 	1	 aTi+ -a T + G -5-9 + K1 T1 - K1 To = 0

aTo	 1	 aTo	 . . .(B-1)
± --a7 - V- 	 + K1 Ti - K3 To + K4 = 0

where K1 , K39 & K4 are characteristic parameters, and

V i .= Vo = V	 . . .(B-2)

according to the ninth assumption in the main text. The (+) sign is for flow

pattern (1) and the (-) sign for flow pattern (2). At steady state conditions,

the above set of equations are reduced to the same set derived in Ref. (1),

namely

d1i+ +K1 T i	 - K1 To=0
T .	 .	 .(B-3)

+	 d^ +K1 Ti - K3 To+K4=0

where the (+) sign is for flow pattern	 (1) and the (-) sign for flow pattern	 (2).
k

The following Laplace transforms will convert the set of equations in (B-1)

from the time 9 domain to the frequency p domain to ease their algebraic manipu-

lation.	 These are

co -pg
a

T i	(X, P) =	 J	 e T i	(X, 9) d9
0

.	 .	 .(B-4)	

f

_	
00
	 -pe

rTo	(X, P) = J	 e To (X, 9) d9
o s

JPL Technical Memorandum 33-781	 23
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Multiplying equation (8-1) by
	

e- P9 and integrating from (9=0) to (9= 0o)

gives:

+ a T i	 p -	 -	 Ti(X,0)

a X + (K 1 + ) T i - K1 To - --Q- — = 0

(B-5)
+ a To

-
	 K4	 To(X, 0)

- 57-- (K3 + P) To + K1 T i + ^ + --^— = 0

where the (+) sign is for flow pattern (1) and the (-) sign for flow pattern (2).

The two simultaneous partial differential equations could be separated for either

variable by using Cramer's rule. These are expressed as

a2X2 + (K3-K1) a Xi - C(Kl+ V)(K3+ ^) - K 1 2 ] Ti + K1 (P4 + 
To(V ^ 0))

	

+ I

T i (X'0)	
P	

1 aTi
-?- . ( K3 + V.)^ + V* 	 = 0	 . . . (B-5)

and

—XI + (K3- 1:1)o	 r
( K1 + V )( K3 + ^) - Kl 21 To

T i• (X,0)	 f	 K4 21!) J- 1 aTo(X'0)

. . .(B-7)

where the (-) sign is for flow pattern (1) and the (+) sign for flow pattern (2).
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i - Initial Temperature Distribution Along the Tube at G = 0

This step has to be determined first before a general solution can be made.

Generally speaking, the initial conditions are arbitrarily preassigned based on

past experience. However, in this work there is no need for any initial estimates

or guesses since we have already stated in the seventh assumption in the main

text that initial conditions are at steady state. Accordingly, using equation

(B-3), the initial temperatures T i (X,0) and To (X,0) are related by:

	

+	
Ti

e— 	+ Kl T i (X,0) - K1 1 0 (X,0) - 0

+ a7—oK`X'0) + K1 T i (X,0) - K3 To (X, 0 ) + K4 (0) = 0

where the (+) sign is for flow pattern (1) and the (-) sign for flow patterns (2).

Equation B-8 can be further separated for one of the temperatures T i (X,0) or

To (X,0) as:

d2T•(or TO )	 dT•(or TO)

d

— + ( K3 - K1
) JX — - K1 (K3 -Kl ) _ -Kl K4(0). . .(B-9)

where the (-) sign is for flow pattern (1) and the (+) sign for flow pattern (2).

For each flow pattern, equation B-9 is solved subject to the boundary conditions

at the end (X=L) as reported in Ref. (1). The result is an explicit relationship

for the quantities 7 	
dT

(X,0), To (X, 	 i
(X,0)	 dT

and	
o(X,O )

with the distance X
--ax	 cTx —'

along the tube.
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I	 ^	 1

ii - General Solution in the p-plane:

Our interest in this work is to study the thermal response when a sudden

step change in the insolation "I" is imposed, Figures B-1 and B-2 illustrate

the resulting change in the parameter K 4 (0). The latter can be written as

K4 ( 0 ) = K4 (0) + AK4- v (0)	 . . .(B-10)

where u(0) is the unit step function at B = 0.

Substituting the initial conditions given by equation (B48) in equations

(B-6) and (B-7), will give

2	 —	 _

X	
+ ( K3 - I a 7 —[( Kl + ^) ( K3 + p ) - 

K12	 Ti

- - K1 K4	
Ti (X.0) (K + K + P)

p	 V	 1	 3	 V

and

2	 —	 _
k	 — TO + ( K3 - K1) a To - [( Kl + P) ( K3 + V ) - '''12] To

a X	 aR—

K K	 T (X,0)	 pK
1
P
4 - o V	 ( K1 + K3 + ^) - -V_ (B-12)

where the (-) sign is for flow pattern (1) and the (+) sign for flow pattern (2).

The particular "integral" or solution can thus be determined from equations

(B-11) and (B-12) as	 .

T i (X,0)	 K1 AK 4V2	
Ij

P	 + p 
p+r 1 ) (p+r2 1

t	
for T i (X,p) and both flow patterns,

and for To (X,p) the particular "integral" is given by

To(X,0)K1 GK4 V2	AK4 V	

}P	
+ P P+rl P

+r2 ) + P+r1 
P+r2 J



1	 ^

1

for both °iow patterns where

K1 + C)(K3 + t
p ) - K1 2 1 = - 1 (P+rl)(p+r2)

VT

is written for simplifying the inverse transformation

and

r l r2 = 2CV 2K1 	(rl+r2) = 2(C+KI)V

r1 =CV+KIV+VC2+K12

r2=CV+K1V -VFC2K12

(B-13)

C =(K3-K,

(B-14)

On the other hand, the roots of the "characteristic" equation of the image

differential equations (B-11) and (B_12) are such that

2 2 + S 1 o2 (K3 -K1 ) - [ (K1 V)(K3*	
2

) - K15 1 	
J = 0	 . . .(8-15)

where the (-) sign is for flow pattern (1) and the (+) sign for flow pattern (2).

The roots S 1 (p) and S 2 (p) are further written in the form:

S 1 (p) = + (C + R)

S2 (P) = + (C - R)

R = rV + C) \V + C + 2K1/	
. . . (B-16)

where the (+) sign is for flow pattern (1) and the (-) sign for flow pattern (2).

The general solution for T i (X,p) and To (X,p) is given by:

S,X	 S X	 T•(X,0)	 K

l 

V2
T i CX,pl = Al	

AK

4i)	 + A2 C') e2
	

+ ^p	 + pp+r l p+r2 )	 . . .(B-17)
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S X	 5 X	 T
o
 (X, 0)	 K V 2 AK

4

	AK4V
To (X,P) = A3 (P) e1	 + A4 (P) e 2	 +	 p	 + p l p+r i /P+r2 ) + P+r l P+r2)

where A l (p), A2 (p), A3 (p) and A4 (p) are arbitrary functions of the frequency p.

Substituting in any one of the image differential equations such as equation

B-5, and comparing the coefficients of exponential and absolute terms;

A(p)
A3 (p) = K (Kl + C + V-+  R)

 1

A4 (P) = A2() (K 1 + C + V - R)
1

for both flow patterns.

Combining equations B-16, B-17, B-18 and B-19 gives

71 	 S2X	 T i (X,0) K1 pK4V2

Ti ( X ,P) = A l ( p ) e	 + A2 (P) e	 +	 p	 + P p+r1 
p+r2)	 (B-20)

To
	 A (P)	 SlX	 A2( P) 	 ^ X

(X,P) = l	 (K1 + C +	 + R) e	 + 	 (Kl + C + L - R) e2

To (X,0)	 K 1 QK4V2	A K4V

+ p	 + p p+r l p+r2	+ p+rl p+r2	
(B-21)

for both flow patterns except for the signs of S l and S2.
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Fig. B-1. Step change in the solar
radiation at a = 0

PAPAMFTrR K4

Fig. 8-2. Step change in the parameter K4
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Appendix C

Inverse Transformation from the Frequency Domain to the Time Domain for

Flow Pattern (1).

i - Boundary and Initial Conditions:

With the image temperatures Ti (X,p) and To (X,p) as determined from

Appendix B, equations B-20 and B-21 are subject to the following two conditions:

1. A boundary condition:

At X = L and at all times:

T i (L,8) = To(L,g)

or

	

Ti (L,P) = To (L,P)	 (C-1)

2. An initial condition:

At the inlet section (X=0) and at all times,.the temperature T i (0,9) is

kept fixed, i.e.,

T i (0 1 0) = T i (0,0) = constant

or

Ti (0,P)

	

	
Ti (0,0)	

. .(C-2)= P

The arbitrary constants A,(p) and A 2 (p) for flow pattern (1) are then given by:

_	 SL

	

Kl ^K
4
-V 2	((S2+V) e2	 V

	

Al( p ) = p p+rl 
p+r2	 S L	 S L

1( S& el - (S2+^) e2

	

A (P) = K1 AK 4
-V '	 l ( S 1 V) e1L - V

2	 P P+rl (p+r 2	 S 1	 S L

L (^1 V) el - (S2 V) e2 ]
	 . . ,(C-3)
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1	 4	 ^

where

l̂ (P)	 (C + R)

T2 (p_ (C - R)	 e

R	 (P +C)(P + c + 2K1 )	 (C-4)

and rll r2 are given by Equation B-14.

ii - Poles on the Complex Plane

The straightforward process of finding the poles or "singular points" of

the transformed temperatures Ti (X,p) and To (X,p) and following it by application

of the "residues" theorem, is the fastest procedure to solve for the inverse

Laplace transformation.

The values of p which result in an infinite value for Ti (X,p) or To (X,p) are

herein called the poles and given by

(1) p l =0, (2) P2= -r l , ( 3 ) P3= -r2 , and (4) P4= Pm

where pm is an infinite set of complex poles that satisfy the equation

p	 RL	 Pm	-RL
(C + gym + Rm ) e m	 = (C + — Rm)e m

Rm = ( !!M- + C)( !m + C + 2K1)

. . .(C-5)

Since T i (X,p) and To (X,p) are analytic everywhere in the region including the

simple poles listed above, then the inverse transformation T(X,9) is given by the

sum of residues of ( p9 T(X,p), at the poles of T(X,p).
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iii	 Residues of the	 e2e term	 Al (p) e	 + A2(P)

This term appears in Equations 8-20	 A '	 -21 for the image temperatures

and O respectively,	 It can be written as:T

A 
l (P) e 

x 

+ A2(P) eS2X

21 (C+R)X [( 	(C-R)L	 ( C-T x P	 +R)L
AK V	 e	 C P ,	 P]	 e	 C+^+R) e,	

-Ki	
R) e

VP-1 14	 7

p
I (C p	 (C+R)L	 ( C

p(p+r l )(p+r2 )	 yR) e	 - (Ct - k) 
e-R)L 

I
.	 .	 .(C-6)

The corres)- ^ iding residue to each pole is listed as follows:

(1)	 Residue at the Pole:	 p - 0

This represents the steady state value of this term and is given by

- AK4	 'X IC sinh R,(L-X) + R,cosh R,(eresidue	 C Sinn
( P=O)	

zG	 (	 R L + Rl coSn R L) .(C-7)

where R,	 C(C+2K,)

(2)	 Residue at the pole: 	 p	 -r

This is given by

2	 -r 9
K AK V	 I

residue	 1	 4	 e
r(p=-r l )	 7F2-rl)

.	 .	 . (C-8)

independent of the distance X.

Residue at the pole: 	 p	 -r2

This is given by

-K AK4V2	 -r2 9
residue	 e
(p=-r2)	 r2

independent of the distance X.
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(4) Residues at the set of complex poles pm:

This is given by	

1

	

Kl NK4 .e me R
m [ ?m (C+Pm + Rm) e n

	 [(C+Rm)X 
-Ie-Rm)X^

m 11 +2L(^ + C + Kl )} (RIn -C2)	
(C-10)

which is reduced to zero at the section Pd.

A1(P)	 p	
S1X	

A2(P)	 p	
S2X

iv - Residues of the term ^— (C+eR) e + ^— (C+ V - R) e
1	 l

This term appears in Equation 8-21 for the image temperature To and is

written as:	

ll
L^K4V 2 { (C-R)X! 2Kl (C*p eC

+R)* 
P V - 

R)] - e(C+t 2K l ICS) 
e
(C-R)+ 0{C+ P +R)1

1
(C+R)L	 (C-R)L

P(p+rl )(P+r2 ) [(Ct + R) e	 - (Ct - R) e

The corresponding residue to each pole is listed as follows:

(1) Residue at the pole p = 0:

This represents the steady state valt
CX

residue = p K
4 . e -sinh(L-X)Rl

(p=0)	 (C sinh R l L + Rl cosh Rll

where

R 1 =C(C1r +2K^)

(2) Residue at the pole p = -rl

This is given by
-rlg

-AK4V e
residue =
(p= -rl)	 (r2-rl)

independent of the distance X.
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(3) Residue at the pole p = -r2:

This is given by
-r29

residue = 
pK4V e

(P= -r2 )	 (r2 --r l )

independent of the distance X.

(4) Residue at the set of complex poles pm:

This is given by

(C-14)

V1
Pm U I Pm (C Pm

P 	 (C-R )X

AK4 RI,
+ R-m) e +	

C+R X
m { e

in (C^Rm)-e 
m (C+Pm -R m)

In	 V—
(C-15)

v - Special Solution at Section X=0

Combining Equations C-7, 8, 9, 10, 12, 13, 14 and 15 and substituting X=0

then

T l (0,9) = T i (0,0) = constant	 V _	 1
pm9 pm p

A K4 	 R L	 2 pK a R2	 (C•+- = +R ) e
T (0,9) = T (0,0) +	

4	 1	 +^	 4	 m	 V	 m	 _
0	 0	 (C tanh R

1	
In+ Rl )	 m (Rm - C )^1 + ^L(Pm + C + Kl)(

. . .(C-16)

AK4 V	 AKO	 - r l 9	 -r29
* Inverse Laplace transform of P+r l p+r2 (r. 	l) (e	 - e	 )	 -

and
AKA4	 AK4 AK4 Kl V 2 e r 19 	 AK4K1V2 a-r29

	Inverse Laplace transform of --- p+r2) _ ^ - r
l r2-rl )	 + r2 r2-rl
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vi - Determination of the set of complex poles p_

The infinite set of poles pa; that satisfy equation C-5 can be found

numerically by solving for the complex number Z such that

2
sinh2

Z = 4L^P f	
Z = 2LRm	. . .(C-17)

1

where Z = Z x + jzy is a complex number. The components Zx and Zy are determined

by solving numerically the following simultaneous equations:

2LK1 sinh Zx cos Z  - Z  = 0

2LK1 	 x	 ycosh Z 
X

. sin Z - Z
y
 = 0	 (C-18)

The roots of Equation C-18 are only functions of the constants L and Kl ; and

independent of the distance X. The sets p m and Rm can thus be followed from

Equations (C-5) and (C-17).
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Appendix D

Inverse transformation from the fre quency domain to the time domain for

flow pattern (2),

i - Boundary and Initial Conditions

With the image temperatures Ti (X,p) and To (X,p) as determined from

Appendix B, Equations B-19 and B-20 are subject to the following two conditions:

(1) A boundary condition:

At (X = L) and at all times

T i (L,9) = To(L,9)

or

T i (L,P) = T° (L,p)	 (0-1)

(2) An initial condition:

At the inlet section (X=0) and at all times, the temperature T o (0,9) is

kept fixed, i.e.,

To(0 1 9) = To
 (0,0) = constant

or

p	 . ,(D-2)

The arbitrary constants A l (p) and A2 (p) for flow pattern:(2) are then given

by:

(R-C)L
,LK4V 2 	(Ct -R)(i +Kl ) e	 - j(KI+Ct -R)

A1(P)	 -C	 R	 -RL
r^(p+"1 )(p+r2 	 a	 I(C+Q+R) a	 (Ct -R) e	 1

. . .(D-3)

(C +R)(L +Kl) e(C+R)L - V KI+CZ+R)

-CL f(C V R) eL _ {C ^•-R) eRL l

--	 _	 L	 JI

where R = J (P +C) (P
V-

+C +2K }
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- d5y2
A2(p)

p(.p+rl)(p+r2)



(1)	 Residue at the pole p = 0:

This represents the steady state value

AK
4

-CX	 {C sinh R I (L-X) - R 1 cosh

= 2C
e	

C sinh R1	+ Rl cos	 R1

at X = 0 this is reduced to

AK4 tanh R 1 L AK4

residue =	 C tanh Rl	+ Rl)

(2)	 Residue at the pole p = -r l

This	 is given by:

A K4 .K1 V 2	-r18
residue

r	 -r	 e
1

r 
2	 1(P--rl)

inddpbadent of the di5tAhch X.

JPL Technical Memorandum 33-781

ii	 - Poles on the complex plane:

The values of p that lead to infinite values for Ti or To are identical

to those found in Appendix C for flow pattern (1).

iii - Residues of the term (P) e (C+R)X + A (p) e(C-R)X

A

This can be written as:

AK4V2. 
e (C+R) (C V -R) V 

+Kl) (R-C)L p(K1+C 
V 

-R)

p (P+r 1 )(P+r2)I( C V +R) eRL- 
(C V -R) eRLI -CL

2 (R-C)X I	 P	 P	
-(C+R)L

^K4V e	 (C 
V 

+R) (
V 
+ Kl ) e

R

P( p+rl )(P+r2 ) f(CV +R) e - (CV -R) e

( Kl +C+^+R)
e

.(D-4)



i

t

(3) Residue at the pole p = -r2:

This is given by:

— AK4 K1 V 2 -r29
residue = r r -r ) e 	 (D-7)

t	 (P=-r2)	 2 2 1

independent of the distance X.

(4) Residue at the set of complex poles pm:

This is given by:

p K4Rm em 
e	

-(C+Rm)X 

(+l

K1 V 2RmL - K1 + Pm + C - Rm\ e	 P ^e	 Rm-CL p l

M (Rm, C2 ) (1 + 0.	 + C + K1
1 
	 m	 e	 (C+V=%)

e
A
^ R4m2epm	

Pm	

eRm-G)X (l+ P1 V) e2RmL - Ki CAL + P + Rm

m (Rm -C )(1+ 2L(^ + C + K1)	 m	 e	 (c+Vm+Rm)

.(D-8)

iv - Special solution at X = 0.

K4tanh R1L
T i (0, g ) = Ti (0,0) 

+( C tanh 1 L + R1)

e
+	 2 Gk4 . ePm Rm2

	
1	 + (V + 1

m (Rm2-C2)l 1 + 2L( Vm +C +K1)} a m-C L. C+Pm+^ \Pm K1).

. . .(D-9)
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