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The obJective of this study IS to mvestlgate the feaslbllzty of a new pomtmg (posztzon 
loop) controller for the NASA-JPL Deep Space Network antennas USing the Disturbance 
Accommodating Control (DAC) theory A model that mcludes state dependent distur
bances was developed, and an example demonstrating the nOise estimator IS presented as 
an mltlal phase m the controller deSign The goal IS to Improve pomtlng accuracy by the 
removal of the systematlc e"ors caused by the antenna misalignment as well as sensor 
nOise and random wmd and thermal disturbances Prelzmmary simulatIOn results show 
that the DAC techmque IS successful m both cancellmg the Imposed e"ors and mam
tammg an optimal control polzcy 

I. Introduction 

Large, preCISlOn antennas for mIlhmeter and submIlhmeter 
wave astronomIcal hsterung reqUIre preclSlon pOIntIng capabIl
Ity In the face of a host of nonlInear and random dIsturbances 
Included In thIS category of nOIse sources are structural mem
ber deflectIons under WInd, thermal and graVItatIonal loadIng, 
beanng fnctIOn torques, and hystereSIS as well as electncal, 
optIcal, and mechanIcal mIsahgnments Introduced by sensors, 
thermal deformatIons, and structure model ImperfectlOns 
tradItIonal approaches for compensatIng systematIc dIstur
bances rely on laboratory measurements and field data and 
employ open-loop (or feed-forward) compensatlOn USIng statIC 
look-up tables to refme predIcted target pOSItIons These tech
ruques, although satIsfactory In sub-X-band RF POIntIng, are 
margInal for the state-of-the-art telemetry reqUIrements for the 
upcomIng Voyager-Neptune flyby and beyond The augmen
tatIOn of the deep space telemetry channel to prOVIde Ka-band 
(32-GHz) capabIhty to Increase miSSlOn performance WIll 

requITe I-mdeg POIntIng accuracy for feaSIble receptlOn at 
dIstances greater than 20 AU The performance advantage 
between the current X-band and prOjected Ka-band IS hIghly 
dependent on antenna POIntmg accuracy Successful deep 
space telecommurucatIons will reqmre the NASA-JPL 34-m 
and 70-m antenna POIntIng systems (see for example FIg 1) to 
exhIbIt POIntIng errors of 1 mdeg (rms) or better WIth current 
accuracy on the order of 5 to 10 mdeg, the antenna pOIntIng 
loss at 32 GHz [1] as compared to loss at X-band (84 GHz) 
IS magmfied by the frequency squared The Increased gam ad
vantage of the Ka-band could easIly be lost WIthout compar
able enhancement m the pOIntmg accuracy, a performance 
reqUIrement unphCIt to the hIgher gam antennas WIth narrower 
beamwidth 

Antenna POIntIng-trackIng errors are typICally functlOns 
of statIC and dynamIC factors MechanIcal mIsalIgnment of 
sensors or Inaccuracy In the predIcts can be conSIdered statIC 
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error sources, whereas dynamIC factors would Include WInd, 
thermal and graVItatIonal loadIng, etc The approach taken In 
thIs study IS first to achIeve a statIC error-free enVIronment for 
preCISIon poIntmg of the antenna The phIlosophy employed 
to achIeve thIS goal IS to treat the systematIc nusalignment 
errors, as well as the servocommands, as dIsturbances to the 
controlled system Hence, as an mitIal phase In the sequence of 
new controller deSIgn, thIs study addresses pOIntIng-trackIng 
m the presence of nOIse The research goal IS Intended to pro
duce the end product controller, hence, further InvestIgatIOn IS 
necessary to augment the controller to Include dynamIC errors 
caused by random thermal and wmd dIsturbances 

Antenna pomtmg Improvements can be developed through 
a sequence of progreSSIve controller modIficatIOns solely In 
the eXIstmg software routInes Current algonthms can be 
enhanced to SImultaneously prOVIde servotrackmg and correc
tIOn of the systematIc errors as well as beam stabIlIzatIon In 
the presence of random dIsturbance torques For a gIven 
antenna, servodnve, feed configuratIOn, and surface dIstortIOn 
profile a computer software package could be developed to 
optimIZe the performance to achIeve, adaptively, the maxI
mum antenna gam for a prescnbed dIrectIon vector WIth a 
"smart" controller 

TYPIcal antenna controllers conSIst of an analog rate 
loop and a pOSItIon loop closed through a dIgItal computer 
The control algonthms for the pOSItIon control are eIther 
proportIOnal-Integral (PI) or state feedback control The PI 
control IS accomplIshed by applYIng gaInS to the pOSItion 
error and the Integral of pOSItIon error The weIghted sum of 
these SIgnals IS the commanded rate for the velOCIty loop 
Zero steady-state error to a ramp tnput IS realIzed WIth the 
PI controller 10 thIS Type II system 

The more sophIstIcated method utilIzmg state feedback 
allows speCIficatIOn of the eigenvalues of the closed posItion 
loop The mltlal disadvantage of the state feedback IS the 
reqUIrement that all the states of the system be available 
for the feedback control The techmque of state estimatIon 
has Circumvented thiS problem, provldmg the controller 
With an estimate value for each of the unmeasurable or un
certaIn state signals The feedback gams are selected to Yield 
the deSIgner's selected eIgenvalues to achIeve deSIred per
formance of the system ThiS techmque was mcorporated 
10 the upgrade of the 70-m antenna aXIs servos [2], [3] With 
the estImator gam vector selection based on system speCifIca
tIOns, mmlmal estimator error, and msensltIvlty to encoder 
and dlgltal-to-analog (P/A) quantizatIOns 

The umque controller enhancement proposed 10 thiS study 
suggests that, Simultaneous With state estImation, another 
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vector be estimated to represent the disturbance state which 
could then be used m determmmg a more complete control 
strategy The philosophy of the Disturbance Accommodatmg 
Controller (PAC) IS based on the concept of state modelIng 
of the disturbance vector as developed 10 [4] In the follow-
109 section the baSICS of the DAC theory are discussed as 
applIed to the antenna pomtmg problem A history of thiS 
DAC technIque appears m [5] 

II. Theoretical Background 
The antenna pomtmg system can be modeled by a set of 

first-order linear differential equatIOns 

x = Ax + Bu + Fw, x(O) = Xo I (I) 
y = Cx 

where x(t) IS an (n X 1) state vector, u(t) IS an (r X I) control 
effort vector, yet) IS the (m X 1) output vector, and wet) IS a 
(p X I) collective disturbance vector representmg the com
bmed effects of all the uncontrolled forces/torques actmg on 
the antenna For mstance, wet) can be projected to mclude the 
effects of lateral wmds, misalIgnments, etc It IS assumed that 
wet) cannot be predIcted or measured accurately The matnces 
A, B, C, and F represent the contmuous-tlme transmiSSIOn 
matnces for the respective SIgnals 

The state vanable feedback IS represented by the control 
law 

(2) 

where Kx IS a feedback gam matnx, not necessanly producmg 
an optimum controller Two control cases Will be analyzed fur
ther, the first assumes no disturbance F and the second case 
assumes that F eXists 

A. Assuming No Disturbances, F = 0 

Substitution of Eq (2) mto Eq (1) Yields the closed-loop 
form With no disturbances, 

i = Ax - BKxx = (A - BK)x (3) 

The advantage of the state feedback IS the ease by which 
the closed-loop eigenvalues of the system, obtamed from 
Eq (3), are arbltranly speCified through the selection of the 
gam matnx Kx (also called the pole placement techmque) 
However, the pole-placement method does not guarantee that 
the deSign IS optimal On the other hand, If the optimal con
troller IS deSigned, the quadratiC performance techmque, from 



the theory of optimal control, provides the ophmal steady
state solution to the mmlmum control effort and mmlmum 
tranSient deVlatlOn of the state from the ongm problem, Ie, 

u = -K x g (4) 

where the Kalman gam ~ = -R-I BT P The term P IS a sym
metnc POSitive semldefimte solutIOn to the steady-state 
Rtccatl equauon m the matnx form, that IS, 

(5) 

The matnces R(>O) and Q(>O) are symmetnc welghtmg 
matnces m the assocIated quadratiC performance mdex for the 
contmuous lmear regulator, that IS 

(6) 

Note that the control IS a tlme-varymg state feedback, even If 
A, B, Q, and Rare hme-mvanant, Kg(t) vanes With time 

Implementation of state feedback reqUlres knowledge of 
the enhre state vector In practice, however, not all state van
abIes are available for duect measurement Hence, a closed
loop estimator IS utIhzed to predict the values of the unmea
surable state vanables based on the measurements of the 
output and control vanables The state estimator vector x' IS 
descnbed by 

or 

x' = Ax' + Bu + Ko (y - Cx'), 
x 

x' = (A-Ko C)x'+Bu+Ko y 
x x 

x'(O) = x' o 

(7) 

where Kox IS the estImator error gam matnx (n X m), and the 
eigenvalues of (A - KoxC) are commonly called the observer 
poles Recall that the system must exhibit complete observa
blhty m order to determme the state vector usmg the output 
and control vanables 

The maccuracy, e, m the state dynamiCs mcurred m usmg 
the full-order (n X 1) estimate x' rather than the actual state x 
IS given by subtractmg Eq (7) from Eq (1) (wlthF== 0), Ie, 

e == x - x' = (A - Ko C) e 
x 

(8) 

where e = x - x' From Eq (8) It IS apparent that the dynamiC 
behaVIOr of the error Slgnal IS determmed by the observer 
poles If the matrlX (A - KoxC) IS a stable matrlX, the error 
vector converges to zero for any mltIal error e(O) 

Smce A, C are fixed by the system, matrIX Kox determmes 
the estimator performance Agam the pole-placement tech
mque can POSition the estImator eigenvalues from Eq (8) for 
proper performance, that IS, x' will converge to x regardless of 
the Imtlal states x(O) and x'(O) Hence, the overall closed-loop 
nOiseless system With full state estimator feedback can be ex
pressed m the state vanable notatIOn as 

and 

[
X] r. A I -BK ] [x] 
x' " l"ox C I A - BIC" ~ "ox C XJ 

[XX,] 
Y = [c I oJ [~ (9) 

Note that the dynamiCs of the closed-loop system depend 
on the eigenvalues of both the controller and the estimator 
However, the separation pnnclple allows the mdependent 
deSign of the controller and the estimator gam matnces assum
mg the observer poles are chosen correctly 

The optimal regulator descnbed so far accommodates only 
Imtlal conclltlons or Impulse type disturbances and hence IS 
mcapable of trackmg or handhng tYPical nOise mputs In the 
case of fimte mput disturbances, the control law of Eqs (2) 
through (9) cannot attam and mamtam track, I e ,yet) * yc(t) 
where y c IS the commanded output 

B. Case of F :/= 0 

ConSider now the plant equations m the form of Eq (1) 
With F *0, 

i = Ax + Bu + Fw (10) 

where F IS an (n X p) matrlX and wet) IS a p-dlmenslonal diS
turbance vector Let us formulate the optimal regulator prob
lem m such a way that at the termmal time T, the resultmg 
control law always bnngs the state x (t) and the velOCity x(t) 
back to the commanded state and velOCity, xc(t) and xcCt) , 
respectively, m the presence of any fimte constant disturbance 
wet) == k With neither the nOise nor the servocommand known 
a pnon, treatmg wet) as either a determmlstlc mput or a non
determmlstlc mput With a known probability IS Impractical 
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smce rellable mformatIOn about the dIsturbance IS not avaIl
able The pnmary ObjectIve of the control IS to mampulate 
u(t) m Eq (10) so that the output yet) approaches and mam
tams the commanded value y cCt) promptly Hence, the prob
lem IS reduced to fmdmg a control WhICh mImmIzes the func
tIOnaIJ{u), 

J(u) = lIm lT [(xQx)+f(u,u, )] dt 
t-T 0 

(11) 

subject to the constramts Imposed by Eq (10) where the 
vector dIsturbance w{O) = 0, and wet) IS assumed to satIsfy 
the lInear dIfferentIal equatIOn 

o 

(12) 

where the III are known, real scalar constants 

The class of admISSIble dIsturbances wet) defmed m Eq (12) 
can be charactenzed as the set of scalar functIOns 

wet) = Hz{t) (13) 

WIth H a real p X p matrIX and where 

z(t) = Dz + aCt) (14) 

where z IS a real p vector and D IS real matrIX (p X p) The aCt) 
m Eq (14) represents the uncertamty m the nOIse model ThIS 
representatIOn of wet), Illustrated m FIg 2, shows that the 
optImal controller IS deSIgned by first buildmg a duplIcate 
model for the dIsturbance process typIfIed by Eqs (13) and 
(14) ThIS nOIse estImator is dnven by the vector Cx{t), as IS 
the plant state estImator The nOIse estImate and the system 
state estImate are weIghted and summed to YIeld the control 
law u (t) As t-+T, x{t) approaches the steady-state x{t) = xc{t) 
pnor to any change m the state command 

MathematIcally the nOIse IS not precIsely known Hence, 
the aCt) represent completely unknown sequences of random
mtensIty, random-occurnng, Isolated delta functIOns Antenna 
experImental data have shown that the alIgnment uncertamty 
exhIbIts the less than nOISY propertIes of a stochastIC process, 
and thUS, m thIS partIcular case, Eq (I3) appears to be a rea
sonable model of the systematIC dIsturbances 

The control law IS effectIvely dIVIded mto two parts, that IS, 

{I 5) 
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where Us IS aSSIgned the task of servo regulatIon, and the com
ponent Ud IS responSIble for counteractmg both dIsturbances, 
wet) and the reference SIgnal y cCt) m servotrackmg In the case 
of regulatIon, y c(t) == 0, the control ud must be capable of 
satIsfymg the relatIOn 

B{t)uit) == -F(t)w(t) = -FHz(t) (l6) 

for all admISSIble wet) m order to cancel out the dIsturbance 
F Johnson m [5] has shown that If the rank of [B I FH] = 
rank of [B] , then 

-F{t)H(t) == -B(t)Kz{t) {I 7) 

for some gam matnx Kz(t) FaIlure of thIS condItIon means 
that some reSIdual effect of wet) will always occur Assummg 
Eq (17) IS satIsfIed, the counteractIOn torque, Ud' IS 

{I 8) 

and the regulatIOn control, us' IS chosen by the conventIOnal 
means as 

usCt ) = -Kx (t)x (t) {I 9) 

The open-loop system augmented to mclude the nOIse state 
IS descnbed by 

(20) 

y [C I 0 ) [:] 

The exact closed-loop state and dIsturbance state vectors, 
assummg all states are avaIlable for measurement, are descnbed 
by the dIfferentIal equatIons 

Redefmmg the representatIOn of Eq (20) so that the new 
state vector mcludes both system and dIsturbance states gIves 



X
• = [x

z
·l J = ~:!+~~+Q. 

(22) 

ExammatlOn of Eq (21) reaffirms the cntenon set forth m 
Eq (17) to elimInate the nOIse term In the system state equa
tIOns However, an obvIous problem anses how IS It possible 
to access the actual disturbance state z(t)? Of course, z(t) IS 
not completely measurable, but It IS possible to resort to esti
mator theory once agam to observe and predict the nOise state 
m an approach Similar to that used m the plant state estima
tion Hence, an appropnate control IS obtamed by replacmg 
the actual nOise state m Eq (I 8) with the estimate of the nOise 
state z'(t), Ie, where estimates of z(t) and x(t) can be ob
tamed from y (t) by on-lme, real-time state reconstructIOn 
In general Kz(t) IS shown to be not unique [4] 

The actual closed-loop plant state x (t), With the assumption 
that all states are available for measurement, and the disturb
ance state error van able ez(t) are descnbed by the differential 
equatIOns 

(23) 

where e = z - z', With Koz the appropnate observer gam for 
the disturbance state estimator 

ExammatlOn of Eq (23) reveals that If ez IS zero, the be
haVIOr of x (t) IS totally mdependent of the disturbance wet) 
Of course, the Ideal case IS rarely realized, however, KOz(t) 
IS chosen so that ez(t)-+-O rapidly for all Initial values of xo, 
zo' eo so that the closed-loop plant state x(t) IS essentially 
msensltlve to external disturbances that can be generated by 
Eq (14) 

Usmg the composite model of Eq (22), the correspondmg 
augmented state estimator vector x'(t) IS descnbed through 
observer theory as 

or 

(24) 

where !.o, the composite estimator gam matrIX, IS chosen to 
force ~'(t) -+ ~(t) Usmg the same prmclple mentIOned earher 
m Eq (8), the eigenvalues of (~ - ~O~) are chosen for the 
augmented system The practical control law for servoregula
tlOn m the face of nOise becomes 

h " were z , x are the estimates of z(t) and x(t), respectively, 
obtamed from y (t) by on-line, real-time state reconstructIOn 
and -~(t)x'(t) IS the control reqUired to minimize a perfor~ 
mance mdex If the disturbances were not present m Eq (10) 
In general KzCt) IS not unique, as shown m [4] 

The system IS reorganized now to mclude servotrackmg 
rather than Just servoregulation Similarly the servo command 
can be treated as a "disturbance" to the plant Recall that the 
pnmary control objective m the antenna pomtmg system IS 
that of servotrackmg Ye(t), where m general the command IS 
related to the system vanables (x l' , xn) by the equatIOn 

Y cCt ) = C(t)x(t) (26) 

In th~ case, the objective IS to control the plant output y (t) so 
that C IS equal to C m Eq (1) The behaVIOr of y IS assumed e 
expressible by the servocommand model 

ye(t) = G(t)c(t) 

c = E(t)c(t) + p.(t) J 
(27) 

where G(t), E(t) are determmed beforehand by appropnate 
modelmg procedures, and c represents the servocommand 
state vector The vector p.(t) represents the uncertam Impulse 
sequences, Similarly mtroduced m the disturbance model m 
the form of aCt) Note that m the case of set pomt regulatIOn, 
Ye IS essentially a constant, and hence E(t) == 0 and G(t) IS 
the Identity matrIX With the assumptIOn that the Y, are mde
pendent outputs In servotrackmg, the Y cCt) are allowed to 
vary contmuously With time and E(t) IS chosen accordmgly 
Exact servotrackmg cannot be realized unless the servocom
mand error e = Gc - ex IS zero Hence, u, must be chosen so 
that (y e -+y) rapidly approaches the null space of C for all 
mltlal conditions 

Hence, the three mdlVIdual plant, dIsturbance, and servo
command models can be combmed mto a SIngle compOSIte 
open-loop model 

(28) 
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where 

A FH 0 B 0 

A= 0 D 0 , B= 0 li = , - aCt) 

0 0 E 0 p.(t) 

I = ~:! where ~ = [C I 0 I 0 ] 

Figure 2 Illustrates the contmuous-tune system with the 
DAC mstalled The solutlOn approach IS as follows An appro
pnate genenc control law for servotrackmg m the face of nOise 
follows as 

u = -N(t)z'(t) - K/t)x'(t) - Kc(t)c'(t) (29) 

UtlllZmg the servocommand state estimator, the closed-loop 
plant can be descnbed as 

x = (A - BK )x + (-BK + FH)z' - BK c' x z z 

+ B [ -K (z - z') - K (x - x') - K (c - c') ] z x c (30) 

With the appropnate chOices of the gams, Kx, Kz, Kc, the estI
mate errors wlll approach zero qUlckly and the nOise terms in 
z should have no effect ony(t) 

III. Mathematical Models for the 
Discrete-Time DAC 

The contmuous-tune model of the disturbed dynamical sys
tem descnbed in Eq (1) can be transformed mto a dlscrete
tIme prototype for mvestigatlOn of an analog plant controlled 
by a digital computer For sunphclty, assume that the signal 
samplmg time IS comcldent With the control effort apphcatIon 
tIme In feedback controller deSIgnS, control declSlons are de
termmed m hght of real-tune data proVided to the controller 
through sensors The term "sampled-data" denotes data pro
Vided to the controller which are updated only at speCific 
Isolated pomts m time Between these updates, the data pro
Vided to the controller typically are held constant LIkeWISe, 
the control deCISions are updated only at speCific Isolated 
times In between the deCISIOn updates, the control actIOn 
u(t) either remains constant or follows a prescnbed mterpola
tlOn rule The computer or digItal controller IS capable of pro
ceSSing only sampled-data and executing discrete-time control 
polICies usually wntten as difference equations 

An appropnate discrete-time representatIon of the system, 
disturbances, and servocommands, analogous to the contmu-
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ous model, IS reqUlred for the mvestlgatlOn Reference [6] 
denves the discrete composite state vanable representatIOn 
With the assumptIOn that the nOise IS not state dependent, Ie, 

x [en + I)T] A(nT) FH(nT) o x(nT) 

o D(nT) 0 z(nT) z [en + I)T] 

c[(n+ I)T] o o £(nT) c(nT) 

B(nT) "(nT) 

+ o J!(nT) + a(nT) 

o p.(nT) 

x(nT) 

y (nT) = [C(nT! I 0 I 0 ] z(nT) 

c(nT) 

where the discrete-time plant matnces are 

A(nT) = ~A [[to + (n + I)T,to + nT]] 

(31) 

~ plant state transItion matrIX m discrete tune 

"([en + I)T] = [t
o

+(n+l)T [~A [to + (n + I)T,T] F(T)H(T) 

to+nT 



and the discrete-time nOise terms become 

D(nT) = ~D [[to + (n + l)T,to + nT]] 

~ nOise state transitIOn matnx 

(32) 

In the tlme-mvanant case, the matnces A, B, C, F are con
stant element matnces, and Eq (32) IS slmpitfied to 

B = IT eA(T-T) BdT 

(33) 

Similarly, the discrete-time servotrackmg state model of 
Eq (27) can be represented m the form 

yc(nT) = G(nT) c(nT) I 
c [en + 1)T] = E(nT) c(nT) + p.(nT) 

(34) 

where 

E(nT) = ~E [en + l)T,nT] 

~ discrete transition matnx for 
the servocommand 

X ~E [to + (n + l)T,~] p.(~)d~ 

In the tlme-mvanant case, Eq (35) IS reduced to 

E(nT) = eET 

p.(nT) = 1 T eE(T -t) p.(~ + to + nT) d~ 

(35) 

(36) 

The model may be generalIZed further to mclude vanous 
exceptional case studies [5] For example, the antenna sys
tematic errors appear to be dependent on the particular 
azimuth/elevation position of the target, hence, the nOise 
wet) can be made a function of the system onentatlOn or 
of the state of the plant In this case the disturbance model 
can be augmented to mclude the state dependency by addmg 
extra terms as follows 

wenT) = H(nT)z(nT) + L (nT)x(nT) 

z [en + l)T] = D(nT)z(nT) + M(nT)x(nT) (37) 

+ a(nT) 

In this case It IS necessary to denve the appropnate rela
tIOnships from the contmuous to discrete-time case tn order 
to ascertam the mathematical meamng of the additional terms 
L(nT) and M(nT) m Eq. (37) These relations are gIVen tn 
Eq (38) 
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[

x [en + OT]] = 

z [en + 1)T] [

_A (nT--+-) FH_(nT)] [x (nT)] 

M(nT) D(nT) z(nT) 

[

B(nT)] 
+ -0- u(nT) 

(38) 

[

X(nT)] 
y(nT) = [C(nT) I 0] --

z(nT) 

where m the tlme-vanant case, 

"12 [en + 1)T] 

and 

M(nT) = J.T eD(T-t) Lx(t + to + nT) dr 

Construction of the on-hne, real-time eshmatlon of the 
three states-plant state x(t), disturbance state z(t), and the 
command state c(t)-reqUlres the dlscrete-hme state estlmator 
glVen by 

34 

[

x,[(n + 1)T]] 
z'[(n + 1)T] = 

c'[(n + 1)T] 
[

A(nT) FH(nT) 

o 0 

o 0 Ix'(nT)] 
z'(nT) 

c'(nT) 

{ ~
C(nT) I 0 I 0] 

X C(nT) I 0 I 0 

o I 0 I 0 r
X(nT)j 
z(nT) 

c(nT) 

[

Y(nT)] } 
- y(nT) 

yc(nT) 

(39) 

where y(nT), y (nT) and y c(nT) denote the mputs to the ob
server The matnces K Ox ' Koz ' KOc are arbitrary gam matnces 
that the DAC designer selects m accordance with the desued 
estlmator response 

In order to estabhsh the dynamics of the eshmators, con
sider the state errors ex' ez and ec defmed as 

ex = x(nT) -x'(nT) 

ez = z(nT) - z'(nT) (40) 

ec = c(nT) - c'(nT) 

These error dynamics are descnbed by the dIscrete equatIOns 
denved from Eq (39), considenng only fust-order vanatlOns, as 

[

ex [en + OT]] 
ez [en + 1)T] = 

ec [en + 1)T] [

A +KOxC FH 

KOzC D 

o D 

(41) 



In order to produce rellable estImates, the observer gam 
matnces (Kox, Koz , KoJ are chosen so that the errors m 
Eq (40) decay toward zero rapidly between control updates 
Hence the homogenous solution of Eq (41) IS made asymptot
Ically stable to the errors equal to zero In general, Eq (41) IS 
a tlme-varymg set of difference equations The gams Kox, 
Koz ' Koc can be solved usmg the discrete Rlccatl equation 
from optImal control theory For the case of constant element 
matnces A, C, FH, D, the design of the estimator gam matnces 
can be accomplished by the conventIOnal eigenvalue placement 
method Definmg the error dynamics as a system with a char
actenstlc matnx A e 

o 

D o (42) 

o 

the eigenvalues are positIOned SUitably (say, at zero) wlthm 
the umt Circle A block diagram of the composite observer IS 
shown m Fig 4 

IV. Determination of the Discrete-Time 
Control Function u 

The determinatIOn of the control function u m the dlscrete
time case mvolves several steps 

(1) The state estimators are weighted and summed to 
determine the control law , Ie, 

u(nT) = f [x'(nT), c'(nT), z'(nT), nT] (43) 

(2) The control function IS dlVlded mto two subtasks as 
mentioned preVIOusly, 

(44) 

where the component Us IS responsible for the servoreg
ulatlon and the ud effort IS aSSigned the task of distur
bance removal mcludmg servotrackmg Substitution of 
Eq (44) mto Eq (27) Yields the plant state relatIOn 

x{(n + 1)T) = A(nT)x{nT) + B{nT)u/nT) 

+ B{nT)uinT) + FH{nT)z(nT) 

+ renT) (45) 

Smce the control effort m a dlscrete-ttme control problem 
IS usually held constant between two consecutive sampllng 
times, It IS ImpOSSible generally to remove all the dIsturbance 
effects LikeWise, the presence of the uncertamty sequence 
renT) also limits the Idea of complete time cancellatIOn of the 
nOise Hence, the concept of "complete cancellation" means 
only that the nOise effects FHz(nT) are removed as they 
appear at Isolated sample times, Ie, 

B(nT) uinT) + FH(nT) z(nT) + E(nT) c(nT) = 0 
(46) 

The condition for eXistence of ud(nT) to satisfy Eq (46) IS 

Complete disturbance cancellatIOn eXists If, and only If, 

FH(nT) = -B(nT)K/nT) 

and 

E(nT) = -B(nT) KcCnT) (47) 

for some matrIX Kz{nT) and Kc(nT) Assummg the conditions 
of Eq (47) are satisfied, the control ud(nT) can be chosen m a 
practical sense as 

where z'(nT) IS the nOise state determmed by on-Ime, real
time estimatIOn of z(nT) The enclosed loop error dynamiCs 
usmg ez , ec may be mcorporated mto the model as 

x [en + 1)T] = A{nT) x{nT) + B{nT) u/nT) 

- [B{nT) Kz{nT)] e/nT) 

- [B{nT) K c{nT)] e /nT) + renT) 
(49) 

Hence, the nOIse effects have been reduced to the (BKzez 
+ BKcec) term, which should decay rapidly toward zero, and, 
of course, the Isolated uncertamty sequence renT) The servo
regulatmg control, u/nT), can now be deSigned by conven
tIOnal methods assummg the nOIse has been removed 

A complete block diagram of the ongmal contmuous-tlme 
plant model, and the proposed DAC WIth full state dlscrete
time composite observer, IS shown m Fig 4, With the control 
law 

u = -K x' s x 
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and 

-K z' -K e' z c (50) 

V. Summary of DAC Procedure 
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(1) The disturbance wet) IS determmed expenmentally to 
ascertam dlstmgUlshmg charactenstlcs Suppose that 
wet) IS noted to consist of an uncertam bias at times 
and mother mtervals wet) exhibits uncertam ramp fea
tures Thus, the waveform of the disturbance has a 
general form 

(51) 

where kl' k2 are unknown constants which change 
value at unknown times 

(2) With the descnptlon of wet), the deSigner determmes 
the Simplest differential equatiOn model for this class 
of disturbances, that IS, the lowest order differential 
equation for which Eq (51) IS the general solution 
The correspondmg DAC matnces H, Dare determmed 
from the general form given m Eqs (13) and (14) In 
observable canomcal form the model becomes 

w(t) • [I 0 J [::l (52) 

where (b l' b2 ) are constants The charactenstlc poly
nomial of the disturbance model D IS equated With the 
resultmg charactenstlc polynomial attamed from the 
Laplace transform ofEq (51), that IS, 

and m thiS example, bland b 2 equate to zero 

(3) The controller problem IS separated mto two subtasks, 

(55) 

such that Us performs servoregulahon and ud IS respon
Sible for servotrackmg a command mput and the distur
bance removal Hence, the control effort Us IS chosen 
for regulation assummg no nOlse, typically, 

(4) 

U = -K x s x (56) 

The control law ud has the form 

U =-Kz-Ke d z c (57) 

where Kz and Kc are chosen to ensure disturbance re
moval and trackmg, respectively 

With available software tools, the equatiOns can be 
mcorporated mto a smgle system Simulation-see 
Eq (28)-and tested for vanous nOlse mputs and 
servocommands 

VI. Test Model 
A slmphfied test model for an antenna servomechamsm IS 

used to Illustrate the DAC procedure (refer to Fig 3) The 
objective IS to control the elevatiOn of an antenna deSigned 
to track an RF Signal The antenna and ItS dnve mechamsm 
have a moment of mertia J and dampmg B ansmg from bear
mg fnctlon, aerodynamiC fnctlon, and the back emf of the 
dc-servodnve motor The equatiOns of motiOn are 

(58) 

where Te IS the net torque developed by the dnve motor, and 
Td represents the disturbance torques pOSSIbly due to wmd, 
static mlsahgnments, etc SubstitutiOn of the assumed coeffi
cients m Eq (58) Yields 

/j + 18 + 68 = U + w (59) 

In thiS example, the coeffiCients for Eqs (58) and (59) 
were arbltranly selected and may be unrealIstiC They were 
selected, however, to descnbe the effect of the new DAC con
troller The general shape of the servocommand angle f) e(t) IS 
assumed to be composed of step and ramp functiOns Hence, 
the servocommand 8 e(t) IS modeled by Y e estimated uSlflg the 
commanded rate (} e(t), and the acceleratiOn 8 c(t) For the pur
pose of mamtammg a good trackmg accuracy, It IS reasonable 
to assume that the antenna dnves are capable of followmg the 
peak velOCity 8 e(t) m the steady state With acceptable error 
Smce the objective IS to permit acceptable commumcatlon 
Signal reception, the dependence of the Signal amplitude on 
pomtmg error IS a major c.oncern The correspondmg servo
command can be represented by the followmg state-space 
represen tatlOn 

e(t) = E(t) e(t) + p.(t) 

(60) 
Y /t) = G(t) e(t) 



Similarly the disturbance wet) (assumed to be step and ramp 
torques In this example) can be modeled as suggested In 

Eq (54), 

w(t) = Hz(t) 
(61) 

z(t) = Dz(t) + aCt) 

Thus, the open-loop system can be represented In the form of 
Eq (28) where 

A 

G=C [ 1 0 ] 

H = [1 0] 

The state feedback gains have been chosen with Kx = [94, 
19] to ensure the undisturbed system closed-loop poles at 
-10, -10 The estimator poles for the plant, nOise, and servo
command states are selected In the usual manner USing pole
placement techmques for approximately 3 to 5 times faster 
response than the combined plant and feedback controller 
A computer simulatIOn of the closed-loop model In Eq (28), 
shown In Fig 5, IS used to demonstrate the effectiveness of 
the DAC In disturbance rejection Figure 6(a) Illustrates the 
controlled output varIable 8 (t) servo tracking the command 
Input 8e(t) without the DAC The disturbance assumed In 
thiS example IS plotted In Fig 6(b) with the controlled varI
able y (t) Without control other than state feedback, the 
output IS unable to distingUish the control Input from the 
disturbance and tends to follow the nOise signal rather than 
the servocommand 

In Fig 7(a) and (b), the same example with the inclUSIOn of 
the DAC demonstrates the effective servotrackIng of the com
mand In the presence of the nOise Input Note that only a 
slight perturbatIOn occurs In the controlled vanable y (t) at 
approximately 50s Just as the disturbance has occurred 

The analogous discrete-time system has been Simulated to 
demonstrate the degradatIOn expected In tracking when the 
positIOn-loop of the controller IS Implemented via a digital 
computer Figures 8 and 9 display the discrete-time system 
In a nOIsy environment both with and without the DAC incor
porated In the loop, assuming a sampling time T = 0 1 second 

VII. Conclusions 
The feaSibility of Implementing a disturbance accommodat

Ing controller has been investigated as applied to an analog 
servodnve for pOSltlOmng an RF antenna The DAC IS deSigned 
for syntheSIZing and rejecting waveform-structured distur
bances The form of the systematic pOinting errors Inherent 
In antenna tracking systems appears viable to thiS character
IzatIOn of the disturbance as structured waveforms rather 
than the nOise generated through random processes with sta
tistical descnptors The waveform type of disturbances can 
be modeled according to a prIOrI data by determination of the 
corresponding differential equatIOn, and hence, the state 
representatIOn of the waveform structured nOise 

In thiS study, simulatIOn results show that the DAC IS an 
approprIate techmque for cancellatIOn of the systematic 
errors, while simultaneously allOWing an optimal control 
policy to regulate the system The ease with which the DAC 
IS Implemented along with the eXisting servo-control IS another 
attrIbute of thiS techmque Practical ImplementatIOn Issues 
such as model order, computation time, and storage require
ments offer no expected challenges for microprocessor-based 
controllers Further study IS necessary to Incorporate the 
state-dependency Issue In regard to systematic pOinting errors 
expected In antenna posItion controllers 
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