1,695 research outputs found
Regulation of T cell lymphokine production by killer cell inhibitory receptor recognition of self HLA class I alleles.
The killer cell inhibitory receptors (KIRs) are surface glycoproteins expressed by natural killer (NK) and T cells that specifically recognize defined groups of polymorphic human histocompatibility leukocyte antigen (HLA) class I molecules. Interactions between KIRs on NK or T cells and major histocompatibility complex (MHC) class I molecules on potential target cells inhibit cell-mediated cytotoxicity, presumably by delivering a negative signal preventing lymphocyte activation. In this study we examined whether KIRs also regulate cytokine production induced in response to T cell receptor-dependent T cell activation. CD4+ and CD8+ T cell clones were stimulated by bacterial superantigens in the presence or absence of monoclonal antibodies (mAbs) against the KIR NKB1 or MHC class I molecules, and production of tumor necrosis factor alpha and interferon gamma was evaluated. When bacterial superantigen was presented by an autologous antigen-presenting cell (APC) to a KIR+ T cell clone, cytokine production was always enhanced in the presence of anti-MHC class I mAb. Similarly, anti-KIR mAb also augmented cytokine production, provided that the APC expressed a HLA class I allele recognized by the KIR. These results suggest that recognition of autologous MHC class I molecules by KIR+ T cells provides a regulatory mechanism acting to modulate the potency of their responses to antigenic challenge
CARMIL family proteins as multidomain regulators of actin-based motility
CARMILs are large multidomain proteins that regulate the actin-binding activity of capping protein (CP), a major capper of actin filament barbed ends in cells. CARMILs bind directly to CP and induce a conformational change that allosterically decreases but does not abolish its actin-capping activity. The CP-binding domain of CARMIL consists of the CP-interaction (CPI) and CARMIL-specific interaction (CSI) motifs, which are arranged in tandem. Many cellular functions of CARMILs require the interaction with CP; however, a more surprising result is that the cellular function of CP in cells appears to require binding to a CARMIL or another protein with a CPI motif, suggesting that CPI-motif proteins target CP and modulate its actin-capping activity. Vertebrates have three highly conserved genes and expressed isoforms of CARMIL with distinct and overlapping localizations and functions in cells. Various domains of these CARMIL isoforms interact with plasma membranes, vimentin intermediate filaments, SH3-containing class I myosins, the dual-GEF Trio, and other adaptors and signaling molecules. These biochemical properties suggest that CARMILs play a variety of membrane-associated functions related to actin assembly and signaling. CARMIL mutations and variants have been implicated in several human diseases. We focus on roles for CARMILs in signaling in addition to their function as regulators of CP and actin. </jats:p
Interleukin 2 activation of natural killer cells rapidly induces the expression and phosphorylation of the Leu-23 activation antigen.
IL-2 potentiates both growth and cytotoxic function of T lymphocytes and NK cells. Resting peripheral blood NK cells can respond directly to rIL-2, without requirement for accessory cells or cofactors, and enhanced cytotoxicity can be measured within a few hours after exposure to this lymphokine. In this study, we describe an activation antigen, Leu-23, that is rapidly induced and phosphorylated after IL-2 stimulation of NK cells and a subset of low buoyant density T lymphocytes. Previously, it has been uncertain whether all NK cells or only a subset are responsive to IL-2. Since within 18 h after exposure to IL-2, essentially all NK cells express Leu-23, these findings indicate that all peripheral blood NK cells are responsive to stimulation by IL-2. The Leu-23 antigen is a disulfide-bonded homodimer, composed of 24-kD protein subunits with two N-linked oligosaccharides. Appearance of this glycoprotein on NK cells is IL-2 dependent and closely parallels IL-2-induced cytotoxicity against NK-resistant solid tumor cell targets
Cancer in Alaska Natives 1969-2003: 35-Year Report
Cancer incidence rates for all Alaska Natives (Eskimo, Indian, Aleut) were first reported in 1976. Since then numerous publications have documented the unusual cancer patterns in this population. These are the latest statistics for which there is complete data statewide, and provide the best estimates of cancer incidence in the Alaska Native population. Numbers of new (incident) cases and rates are given for all cancers and for specific sites. These numbers are presented by age, sex, ethnicity, geographic region, and service unit. Data have been collected, tabulated, and analyzed in accordance with procedures established by the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) program
Old Bulloch Personalities (Supplement to No. 6)
This supplement to Southern Folkways Journal Review: Number 6 contains three articles by Smith Callaway Banks on Civil War personalities Captain William W. Williams, J.S. Cone Camp, and Garrett Williams. These are followed by an interview by Scott Collins with Daisy Davis Trapnell about Portal City Cemetery and by a list of Statesboro High School graduates and faculty complied by Camilla Akins Lanier.https://digitalcommons.georgiasouthern.edu/bchs-pubs/1026/thumbnail.jp
Recommended from our members
Hypoimmunogenic Derivatives of Induced Pluripotent Stem Cells Evade Immune Rejection in Fully Immunocompetent Allogeneic Recipients
Atomic-scale structure of the SrTiO3(001)-c(6x2) reconstruction: Experiments and first-principles calculations
The c(6x2) is a reconstruction of the SrTiO3(001) surface that is formed
between 1050-1100oC in oxidizing annealing conditions. This work proposes a
model for the atomic structure for the c(6x2) obtained through a combination of
results from transmission electron diffraction, surface x-ray diffraction,
direct methods analysis, computational combinational screening, and density
functional theory. As it is formed at high temperatures, the surface is complex
and can be described as a short-range ordered phase featuring microscopic
domains composed of four main structural motifs. Additionally, non-periodic
TiO2 units are present on the surface. Simulated scanning tunneling microscopy
images based on the electronic structure calculations are consistent with
experimental images
- …