7 research outputs found

    Using Landsat and Sentinel-2 Data for the Generation of Continuously Updated Forest Type Information Layers in a Cross-Border Region

    Get PDF
    From global monitoring to regional forest management there is an increasing demand for information about forest ecosystems. For border regions that are closely connected ecologically and economically, a key factor is the cross-border availability and consistency of up-to-date information such as the forest type. The combination of existing forest information with Earth observation data is a rational method and can provide valuable contribution to serve the increased information demand on a transnational level. We present an approach for the remote sensing-based generation of a transnational and temporally consistent forest type information layer for the German federal states of Rhineland-Palatinate and Saarland, and the Grand Duchy of Luxembourg. Existing forest information data from different countries were merged and combined with suitable vegetation indices derived from Landsat 8 and Sentinel-2 imagery acquired in early spring. An automated bootstrap-based approximation of the optimum threshold for the distinction of “broadleaved” and “coniferous” forest was applied. The spatially explicit forest type information layer is updated annually depending on image availability. Overall accuracies between 79 and 96 percent were obtained. Every spot in the region will be updated successively within a period of expectably three years. The presented approach can be integrated in fully automated processing chains to generate basic forest type information layers on a regular basis.Peer Reviewe

    A double-sampling extension of the German National Forest Inventory for design-based small area estimation on forest district levels

    No full text
    The German National Forest Inventory consists of a systematic grid of permanent sample plots and provides a reliable evidence-based assessment of the state and the development of Germany’s forests on national and federal state level in a 10 year interval. However, the data have yet been scarcely used for estimation on smaller management levels such as forest districts due to insufficient sample sizes within the area of interests and the implied large estimation errors. In this study, we present a double-sampling extension to the existing German National Forest Inventory (NFI) that allows for the application of recently developed design-based small area regression estimators. We illustrate the implementation of the estimation procedure and evaluate its potential for future large-scale operational application by the example of timber volume estimation on two small-scale management levels (45 and 405 forest district units respectively) over the entire area of the federal German state of Rhineland-Palatinate. An airborne laserscanning (ALS) derived canopy height model and a tree species classification map based on satellite data were used as auxiliary data in an ordinary least square regression model to produce the timber volume predictions. The results support that the suggested double-sampling procedure can substantially increase estimation precision on both management levels: the two-phase estimators were able to reduce the variance of the one-phase simple random sampling estimator by 43% and 25% on average for the two management levels respectively.ISSN:2072-429

    Assessing the Suitability of Future Multi- and Hyperspectral Satellite Systems for Mapping the Spatial Distribution of Norway Spruce Timber Volume

    No full text
    The availability of accurate and timely information on timber volume is important for supporting operational forest management. One option is to combine statistical concepts (e.g., small area estimates) with specifically designed terrestrial sampling strategies to provide estimations also on the level of administrative units such as forest districts. This may suffice for economic assessments, but still fails to provide spatially explicit information on the distribution of timber volume within these management units. This type of information, however, is needed for decision-makers to design and implement appropriate management operations. The German federal state of Rhineland-Palatinate is currently implementing an object-oriented database that will also allow the direct integration of Earth observation data products. This work analyzes the suitability of forthcoming multi- and hyperspectral satellite imaging systems for producing local distribution maps for timber volume of Norway spruce, one of the most economically important tree species. In combination with site-specific inventory data, fully processed hyperspectral data sets (HyMap) were used to simulate datasets of the forthcoming EnMAP and Sentinel-2 systems to establish adequate models for estimating timber volume maps. The analysis included PLS regression and the k-NN method. Root Mean Square Errors between 21.6% and 26.5% were obtained, where k-NN performed slightly better than PLSR. It was concluded that the datasets of both simulated sensor systems fulfill accuracy requirements to support local forest management operations and could be used in synergy. Sentinel-2 can provide meaningful volume distribution maps in higher geometric resolution, while EnMAP, due to its hyperspectral coverage, can contribute complementary information, e.g., on biophysical conditions

    Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management

    No full text
    A key factor for operational forest management and forest monitoring is the availability of up-to-date spatial information on the state of forest resources. Earth observation can provide valuable contributions to these information needs. The German federal state of Rhineland-Palatinate transferred its inherited forest information system to a new architecture that is better able to serve the needs of centralized inventory and planning services, down to the level of forest districts. During this process, a spatially adaptive classification approach was developed to derive high-resolution forest information layers (e.g., forest type, tree species distribution, development stages) based on multi-temporal satellite data. This study covers the application of the developed approach to a regional scale (federal state level) and the further adaptation of the design to meet the information needs of the state forest service. The results confirm that the operational requirements for mapping accuracy can, in principle, be fulfilled. However, the state-wide mapping experiment also revealed that the ability to meet the required level of accuracy is largely dependent on the availability of satellite observations within the optimum phenological time-windows
    corecore