749 research outputs found

    Influence of heavy modes on perturbations in multiple field inflation

    Full text link
    We investigate linear cosmological perturbations in multiple field inflationary models where some of the directions are light while others are heavy (with respect to the Hubble parameter). By integrating out the massive degrees of freedom, we determine the multi-dimensional effective theory for the light degrees of freedom and give explicitly the propagation matrix that replaces the effective sound speed of the one-dimensional case. We then examine in detail the consequences of a sudden turn along the inflationary trajectory, in particular the possible breakdown of the low energy effective theory in case the heavy modes are excited. Resorting to a new basis in field space, instead of the usual adiabatic/entropic basis, we study the evolution of the perturbations during the turn. In particular, we compute the power spectrum and compare with the result obtained from the low energy effective theory.Comment: 24 pages, 13 figures; v2 substantial changes in sec.V; v3 matching the published version on JCA

    A general proof of the equivalence between the \delta N and covariant formalisms

    Full text link
    Recently, the equivalence between the \delta N and covariant formalisms has been shown (Suyama et al. 2012), but they essentially assumed Einstein gravity in their proof. They showed that the evolution equation of the curvature covector in the covariant formalism on uniform energy density slicings coincides with that of the curvature perturbation in the \delta N formalism assuming the coincidence of uniform energy and uniform expansion (Hubble) slicings, which is the case on superhorizon scales in Einstein gravity. In this short note, we explicitly show the equivalence between the \delta N and covariant formalisms without specifying the slicing condition and the associated slicing coincidence, in other words, regardless of the gravity theory.Comment: 7 pages,a reference added, to be published in EP

    P33. Design and evaluation of an Escherichia coli biomarker for indication of pH

    Get PDF
    Measuring pH is one of the most commonly used techniques in both the laboratory as well as the field due to its importance in a multitude of biochemical processes. Traditional methods of measuring pH may be highly developed in accuracy and precision but often involve disruption of the environment. Biological markers offer an alternative that allows for long-term pH monitoring. This innovative approach allows for vast applications such as in the manufacturing, food processing and research industries. Under moderate acidic conditions, the asr (acid shock RNA) gene is highly inducible and has been demonstrated to be crucial for growth at high acidities. The alx locus in E. coli contains a putative transporter preceded by a pH-induced riboregulator that operates under moderately alkaline conditions. In this study, vivid blue/purple and green/blue chromoproteins, cJBlue and amilCP respectively, were used as visual indicators. DH5α competent E. coli cells were transformed with recombinant plasmids containing either amilCP downstream the asr promoter or cjBlue downstream the alx promoter and 5’UTR, giving rise to the alx-cjBlue and asr-amilCP cell lines. Through this methodology, we were able to create strains of E. coli that expressed either a blue or blue-green chromoprotein under low or high pHs respectively

    Combined local and equilateral non-Gaussianities from multifield DBI inflation

    Full text link
    We study multifield aspects of Dirac-Born-Infeld (DBI) inflation. More specifically, we consider an inflationary phase driven by the radial motion of a D-brane in a conical throat and determine how the D-brane fluctuations in the angular directions can be converted into curvature perturbations when the tachyonic instability arises at the end of inflation. The simultaneous presence of multiple fields and non-standard kinetic terms gives both local and equilateral shapes for non-Gaussianities in the bispectrum. We also study the trispectrum, pointing out that it acquires a particular momentum dependent component whose amplitude is given by fNLlocfNLeqf_{NL}^{loc} f_{NL}^{eq}. We show that this relation is valid in every multifield DBI model, in particular for any brane trajectory, and thus constitutes an interesting observational signature of such scenarios.Comment: 38 pages, 11 figures. Typos corrected; references added. This version matches the one in press by JCA

    Non-Gaussianity from Lifshitz Scalar

    Full text link
    A Lifshitz scalar with the dynamical critical exponent z = 3 obtains scale-invariant, super-horizon field fluctuations without the need of an inflationary era. Since this mechanism is due to the special scaling of the Lifshitz scalar and persists in the presence of unsuppressed self-couplings, the resulting fluctuation spectrum can deviate from a Gaussian distribution. We study the non-Gaussian nature of the Lifshitz scalar's intrinsic field fluctuations, and show that primordial curvature perturbations sourced from such field fluctuations can have large non-Gaussianity of order f_NL = O(100), which will be detected by upcoming CMB observations. We compute the bispectrum and trispectrum of the fluctuations, and discuss their configurations in momentum space. In particular, the bispectrum is found to take various shapes, including the local, equilateral, and orthogonal shapes. Intriguingly, all integrals in the in-in formalism can be performed analytically.Comment: 17 pages, 15 figures, v2: published in JCA

    A Statistical Approach to Multifield Inflation: Many-field Perturbations Beyond Slow Roll

    Full text link
    We study multifield contributions to the scalar power spectrum in an ensemble of six-field inflationary models obtained in string theory. We identify examples in which inflation occurs by chance, near an approximate inflection point, and we compute the primordial perturbations numerically, both exactly and using an array of truncated models. The scalar mass spectrum and the number of fluctuating fields are accurately described by a simple random matrix model. During the approach to the inflection point, bending trajectories and violations of slow roll are commonplace, and 'many-field' effects, in which three or more fields influence the perturbations, are often important. However, in a large fraction of models consistent with constraints on the tilt the signatures of multifield evolution occur on unobservably large scales. Our scenario is a concrete microphysical realization of quasi-single-field inflation, with scalar masses of order HH, but the cubic and quartic couplings are typically too small to produce detectable non-Gaussianity. We argue that our results are characteristic of a broader class of models arising from multifield potentials that are natural in the Wilsonian sense.Comment: 39 pages, 17 figures. References added. Matches version published in JCA

    Non-gaussianity from the bispectrum in general multiple field inflation

    Get PDF
    We study the non-gaussianity from the bispectrum in multi-field inflation models with a general kinetic term. The models include the multi-field K-inflation and the multi-field Dirac-Born-Infeld (DBI) inflation as special cases. We find that, in general, the sound speeds for the adiabatic and entropy perturbations are different and they can be smaller than 1. Then the non-gaussianity can be enhanced. The multi-field DBI-inflation is shown to be a special case where both sound speeds are the same due to a special form of the kinetic term. We derive the exact second and third order actions including metric perturbations. In the small sound speed limit and at leading order in the slow-roll expansion, we derive the three point function for the curvature perturbation which depends on both adiabatic and entropy perturbations. The contribution from the entropy perturbations has a different momentum dependence if the sound speed for the entropy perturbations is different from the adiabatic one, which provides a possibility to distinguish the multi-field models from single field models. On the other hand, in the multi-field DBI case, the contribution from the entropy perturbations has the same momentum dependence as the pure adiabatic contributions and it only changes the amplitude of the three point function. This could help to ease the constraints on the DBI-inflation models.Comment: 16 pages, no figur

    Trispectrum from Ghost Inflation

    Full text link
    Ghost inflation predicts almost scale-invariant primordial cosmological perturbations with relatively large non-Gaussianity. The bispectrum is known to have a large contribution at the wavenumbers forming an equilateral triangle and the corresponding nonlinear parameter fNLequilf_{NL}^{equil} is typically of order O(102)O(10^2). In this paper we calculate trispectrum from ghost inflation and show that the corresponding nonlinear parameter Ï„NL\tau_{NL} is typically of order O(104)O(10^4). We investigate the shape dependence of the trispectrum and see that it has some features different from DBI inflation. Therefore, our result may be useful as a template to distinguish ghost inflation from other models of inflation by future experiments.Comment: 25 pages, 10 figure

    Non-Gaussianity from false vacuum inflation: Old curvaton scenario

    Full text link
    We calculate the three-point correlation function of the comoving curvature perturbation generated during an inflationary epoch driven by false vacuum energy. We get a novel false vacuum shape bispectrum, which peaks in the equilateral limit. Using this result, we propose a scenario which we call "old curvaton". The shape of the resulting bispectrum lies between the local and the false vacuum shapes. In addition we have a large running of the spectral index.Comment: 13 pages, 3 figures; v2 with minor revison; v3 final version to appear on JCA
    • …
    corecore