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Non-gaussianity from the bispectrum in general multiple field inflation
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We study the non-gaussianity from the bispectrum in multi-field inflation models with a general
kinetic term. The models include the multi-field K-inflation and the multi-field Dirac-Born-Infeld
(DBI) inflation as special cases. We find that, in general, the sound speeds for the adiabatic and
entropy perturbations are different and they can be smaller than 1. Then the non-gaussianity can
be enhanced. The multi-field DBI-inflation is shown to be a special case where both sound speeds
are the same due to a special form of the kinetic term. We derive the exact second and third order
actions including metric perturbations. In the small sound speed limit and at leading order in the
slow-roll expansion, we derive the three point function for the curvature perturbation which depends
on both adiabatic and entropy perturbations. The contribution from the entropy perturbations has
a different momentum dependence if the sound speed for the entropy perturbations is different from
the adiabatic one, which provides a possibility to distinguish the multi-field models from single
field models. On the other hand, in the multi-field DBI case, the contribution from the entropy
perturbations has the same momentum dependence as the pure adiabatic contributions and it only
changes the amplitude of the three point function. This could help to ease the constraints on the
DBI-inflation models.

I. INTRODUCTION

The inflationary scenario succeeds to explain the origin of temperature fluctuations of the Cosmic Microwave Back-
ground (CMB). The increasing precision of the measurements of the CMB enables us to distinguish between many
inflationary models. The primordial fluctuations generated during inflation are nearly scale invariant and gaussian.
Thus the deviation from the exact scale invariance and gaussianity will give valuable information in discriminating
many possible models. Especially, non-gaussianity of the primordial fluctuations will provide powerful ways to con-
strain models (see e.g. [1] for a review). The simplest single field inflation models predict that the non-gaussianity of
the fluctuations should be very difficult to be detected even in the future experiments such as Planck [2]. If we detect
large non-gaussianity, this means that the simplest model of inflation would be rejected.

There are a few models where the primordial fluctuations generated during inflation have a large non-gaussianity.
In the single field case, if the inflaton field has a non-trivial kinetic term, it is known that the non-gaussianity can be
large. In K-inflation models where the kinetic term of the inflaton field is generic, the sound speed of the perturbations
can be much smaller than 1 [3, 4]. This leads to a large non-gaussianity of the fluctuations. The Dirac-Born-Infeld
(DBI) inflation, motivated by string theory, is another example [5, 6, 7, 8]. In DBI-inflation, the inflaton is identified
with the position of a moving D3 brane whose dynamics is described by the DBI action. Again, due to the non-trivial
form of the kinetic term, the sound speed can be smaller than 1 and the non-gaussianity becomes large [9, 10]. The
third and fourth order actions for a single inflaton field with a generic kinetic term have been calculated by properly
taking into account metric perturbations and three and four point functions have been calculated [10, 11, 12]. For
the detailed observational consequences of single-field DBI-inflation see Refs. [13, 14, 15, 16, 17, 18, 19, 20].

Multi-field inflation models where the curvature perturbation is modified on large scales due to the entropy per-
turbations [21] have been also extensively studied recently. In the case of the standard kinetic term, it is not easy to
generate large non-gaussianity from multi-field dynamics [22, 23] (see however Ref. [24]). In the DBI-inflation case,
the position of the brane in each compact direction is described by a scalar field. Then DBI-inflation is naturally
a multi-field model [25]. The effect of the entropy perturbations in the inflationary models based on string theory
constructions in a slightly different context is also considered in [26, 27]. Recently, Huang et.al. calculated the bis-
pectrum of the perturbations in multi-field DBI-inflation with the assumption that the kinetic term depends only on
X = −GIJ∂µφ

I∂µφJ/2 where φJ are the scalar fields (I = 1, 2, ...) and GIJ is the metric in the field space as in the
case of K-inflation [28]. They found that in addition to the usual bispectrum of adiabatic perturbations, there exists
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a new contribution coming from the entropy perturbations. Then they showed that the entropy field perturbations
propagate with the speed of light and the contribution from the entropy perturbations is suppressed. This property
can also be confirmed by the analysis of a more general class of multi-field models where the kinetic terms are given
by arbitrary functions of X [29, 30]. However, Langlois et.al. pointed out that their assumption cannot be justified for
the multi-field DBI-inflation [31]. Even though the action depends only on X in the homogeneous background, there
exit other kind of terms which contribute only to inhomogeneous perturbations. They find that this dramatically
changes the behavior of the entropy perturbations. In fact, it was shown that the entropy perturbations propagate
with the same sound speed as the adiabatic perturbations.

In this paper, we study a fairly general class of multi-field inflation models with a general kinetic term which includes
K-inflation and DBI-inflation. We study the sound speeds of the adiabatic perturbations and entropy perturbations
and clarify the difference between K-inflation and DBI-inflation. Then we calculate the third order action by properly
taking into account the effect of gravity. Then three point functions at leading order in slow-roll and in the small
sound speed limit are obtained. We can recover the results for K-inflation and DBI-inflation easily from this general
result.

The structure of the paper is as follows. In section II, we describe our model and derive the equations in the
background. In section III, we study the perturbations using the ADM formalism. The second and third order
actions are derived by properly taking into account the metric perturbations. Then we decompose the perturbations
into adiabatic and entropy directions and write down the action in terms of the decomposed fields. In section IV,
we study the sound speed in several models including K-inflation and DBI-inflation. It is shown that in general,
adiabatic and entropy sound speeds are different and both can be smaller than 1. It is shown that the DBI action can
be obtained by requiring that the sound speeds for the adiabatic and entropy perturbations are the same. In section
V, the third order action at leading order in slow-roll and in the small sound speed limit is obtained in terms of the
decomposed fields. Then the three point functions are derived for a generalized model which includes K-inflation and
DBI-inflation as particular cases. Section VI is devoted to the conclusion.

II. THE MODEL

We consider a very general class of models described by the following action

S =
1

2

∫

d4x
√−g

[

M2
PlR + 2P (XIJ , φI)

]

, (1)

where φI are the scalar fields (I = 1, 2, ..., N), MPl is the Planck mass that we will set to unity hereafter, R is the
Ricci scalar and

XIJ ≡ −1

2
gµν∂µφ

I∂νφ
J , (2)

is the kinetic term, gµν is the metric tensor. We label the fields’ Lagrangian by P and we assume that it is a well
behaved function. Greek indices run from 0 to 3. Lower case Latin letters (i, j, ...) denote spatial indices. Upper case
Latin letters denote field indices.

The Einstein field equations in this model are

Gµν = Pgµν + P,XIJ∂µφ
I∂νφ

J ≡ Tµν , (3)

where P,XIJ denotes the derivative of P with respect to XIJ [32]. The generalized Klein-Gordon equation reads

gµν
(

P,XIJ∂νφ
I
)

;µ
+ P,J = 0, (4)

where ; denotes covariant derivative with respect to gµν and P,J denotes the derivative of P with respect to φJ .
In the background, we are interested in flat, homogeneous and isotropic Friedmann-Robertson-Walker universes

described by the line element

ds2 = −dt2 + a2(t)δijdx
idxj , (5)

where a(t) is the scale factor. The Friedmann equation and the continuity equation read

3H2 = E0, (6)
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Ė0 = −3H (E0 + P0) , (7)

where the Hubble rate is H = ȧ/a, E0 is the total energy of the fields and it is given by

E0 = 2XIJ
0 P,XIJ − P0, (8)

where a subscript zero denotes background quantities and XIJ
0 = 1/2φ̇I

0φ̇
J
0 . The equations of motion for the scalar

fields reduce to

P,XIJ φ̈I +
(

3HP,XIJ + Ṗ,XIJ

)

φ̇I − P,J = 0. (9)

III. PERTURBATIONS

In this section, we will consider perturbations of the background (5) beyond linear order. For this purpose, we
will construct the action at second and third order in the perturbations and it is convenient to use the ADM metric
formalism [10, 29, 30, 33, 34, 35, 36]. The ADM line element reads

ds2 = −N2dt2 + hij

(

dxi +N idt
) (

dxj +N jdt
)

, (10)

where N is the lapse function, N i is the shift vector and hij is the 3D metric. The action (1) becomes

S =
1

2

∫

dtd3x
√
hN

(

(3)R + 2P (XIJ , φI)
)

+
1

2

∫

dtd3x
√
hN−1

(

EijE
ij − E2

)

. (11)

The tensor Eij is defined as

Eij =
1

2

(

ḣij −∇iNj −∇jNi

)

, (12)

and it is related to the extrinsic curvature by Kij = N−1Eij . ∇i is the covariant derivative with respect to hij . X
IJ

can be written as

XIJ = −1

2
hij∂iφ

I∂jφ
J +

N−2

2
vIvJ , (13)

where vI is defined as

vI ≡ φ̇I −N j∇jφ
I . (14)

The Hamiltonian and momentum constraints are respectively

(3)R+ 2P − 2N−2P,XIJvIvJ −N−2
(

EijE
ij − E2

)

= 0,

∇j

(

N−1Ej
i

)

−∇i

(

N−1E
)

= N−1P,XIJvI∇iφ
J . (15)

We decompose the shift vector N i into scalar and intrinsic vector parts as

Ni = Ñi + ∂iψ, (16)

where ∂iÑ i = 0, here and in the rest of the section indices are raised with δij .

A. Perturbations in the uniform curvature gauge

In the uniform curvature gauge, the 3D metric takes the form

hij = a2δij ,

φI(x, t) = φI
0(t) +QI(x, t), (17)

where QI denotes the field perturbations. In the following, we will usually drop the subscript “0” on φI
0 and simply

identify φI as the homogeneous background fields unless otherwise stated.
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We expand N and N i in powers of the perturbation QI

N = 1 + α1 + α2 + · · · , (18)

Ñi = Ñi
(1)

+ Ñi
(2)

+ · · · , (19)

ψ = ψ1 + ψ2 + · · · , (20)

where αn, Ñi
(n)

and ψn are of order (QI)n. At first order in QI , a particular solution for equations (15) is:

α1 =
P,XIJ

2H
φ̇IQJ , Ñi

(1)
= 0,

∂2ψ1 =
a2

2H

[

−6H2α1 + P,KQ
K − φ̇I φ̇JP,XIJKQ

K +
(

P,XIJ + φ̇Lφ̇MP,XLM XIJ

)(

φ̇I φ̇Jα1 − φ̇J Q̇I
)]

. (21)

The second order action is calculated as

S(2) =

∫

dtd3x
a3

2

[

XIJ
1 XLM

1 P,XIJ XLM + P,XIJ Q̇IQ̇J − a−2P,XIJ∂iQI∂iQ
J − 3

2
φ̇J φ̇LP,XIJP,XLMQIQM

+
φ̇JP,XIJQI

H

(

P,XLMXLM
1 + P,KQ

K
)

+ 2P,XIJKQ
K
(

−φ̇I φ̇Jα1 + φ̇IQ̇J
)

+ P,KLQ
KQL

+P,XIJ

(

3φ̇I φ̇Jα2
1 − 4α1φ̇

IQ̇J
)

]

, (22)

where

XIJ
1 ≡ −α1φ̇

I φ̇J + φ̇(IQ̇J) . (23)

After integrating by parts in the action and employing the background field equations, the second order action can
be finally written in the rather simple form

S(2) =
1

2

∫

dtd3xa3
[

(P,XIJ + P,XIKXJL φ̇K φ̇L)Q̇IQ̇J

− 1

a2
P,XIJ∂iQ

I∂iQJ −MIJQ
IQJ + NIJQ

JQ̇I
]

, (24)

with the effective squared mass matrix

MIJ = −P,IJ +
XLM

H
φ̇K(P,XJKP,IXLM + P,XIKP,JXLM )

− 1

H2
XMNXPQP,XMN XP QP,XIKP,XJL φ̇K φ̇L

− 1

a3

d

dt

[

a3

H
P,XIKP,XJL φ̇K φ̇L

]

, (25)

NIJ = 2

(

P,JXIK − XMN

H
P,XIKXMNP,XJL φ̇L

)

φ̇K . (26)

In the same way, the third order action is given by

S(3) =

∫

dtd3xa3

[

[

3H2α2
1 +

2H

a2
α1∂

2ψ1 +
1

2a4

(

∂2ψ1∂
2ψ1 − ∂i∂jψ1∂

i∂jψ1

)

]

α1

+

[

− 1

2
α3

1φ̇
I φ̇J + α2

1φ̇
IQ̇J + a−2α1φ̇

I∂iψ1∂iQ
J − α1

2
Q̇IQ̇J − a−2∂iQ

J

(

Q̇I∂iψ1 +
1

2
α1∂

iQI

)]

P,XIJ

+
[

α2
1φ̇

I φ̇J − 3

2
α1φ̇

IQ̇J +
1

2
Q̇IQ̇J − a−2∂iQ

J

(

φ̇I∂iψ1 +
1

2
∂iQI

)

]

XLM
1 P,XIJ XLM

+
[1

2
α2

1φ̇
I φ̇J − α1φ̇

IQ̇J +
1

2
Q̇IQ̇J − a−2∂iQ

J

(

φ̇I∂iψ1 +
1

2
∂iQI

)

]

P,XIJKQ
K

+
α1

2
P,IJQ

IQJ +
1

6
XIJ

1 XLM
1 XQR

1 P,XIJXLM XQR +
1

2
XIJ

1 XLM
1 P,XIJXLM KQ

K

+
1

2
XIJ

1 P,XIJLMQLQM +
1

6
P,IJKQ

IQJQK

]

. (27)
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B. Decomposition into adiabatic and entropy perturbations

We can decompose the perturbations into the instantaneous adiabatic and entropy perturbations, where the adi-
abatic direction corresponds to the direction of the background fields’ evolution while the entropy directions are
orthogonal to this [37]. For this purpose, following [29], we introduce an orthogonal basis eI

n(n = 1, 2, ..., N) in the
field space. The orthonormal condition is defined as

P,XIJ eI
ne

J
m = δnm , (28)

so that the gradient term P,XIJ∂iQ
I∂iQJ is diagonalized [38]. We pick up the adiabatic vector as

eI
1 =

φ̇I

√

P,XJK φ̇J φ̇K

, (29)

which satisfies the normalization given by Eq. (28). The field perturbations are decomposed on this basis as

QI = Qne
I
n . (30)

We defined the matrix Zmn which describes the time variation of the basis as

ėI
n = eI

mZmn , (31)

which satisfies Zmn = −Znm − Ṗ,XIJ eI
me

J
n as a consequence of (P,XIJ eI

ne
J
m)˙ = 0.

In terms of the decomposed fields, the second order action (24) can be rewritten as

S(2) =
1

2

∫

dtd3xa3
[

Kmn(DtQm)(DtQn) − 1

a2
δmn∂iQm∂

iQn

−MmnQmQn + NmnQn(DtQm)
]

, (32)

where

DtQm ≡ Q̇m + ZmnQn , (33)

Kmn ≡ δmn + (P,XMN φ̇M φ̇N )P,XIKXJLeI
1e

K
n e

J
1 e

L
m , (34)

Mmn ≡ MIJe
I
me

J
n , (35)

Nmn ≡ NIJe
I
me

J
n. (36)

From the constructions, Kmn, Mmn and Nmn are symmetric with respect to m and n. The explicit form of the
effective squared mass matrix in this representation is

Mmn = −P,mn +
1

H
(P,XKL φ̇K φ̇L)3/2(P,mXMN eM

1 e
N
1 )δn1

− 1

4H2
(P,XKL φ̇K φ̇L)3(P,XMN XPQeM

1 e
N
1 e

P
1 e

Q
1 )δm1δn1

− 1

a3

d

dt

[

a3

H
(P,XMN φ̇M φ̇N )P,XIKP,XJLeK

1 e
L
1

]

eI
me

J
n , (37)

Nmn ≡ − 1

H
(P,XP Q φ̇P φ̇Q)2(P,XKLXMN eK

me
L
1 e

M
1 e

N
1 )δn1

+2

√

P,XLM φ̇Lφ̇M (P,nXIK eI
me

K
1 ) , (38)

where P,mn ≡ P,IJe
I
me

J
n and P,nXIK ≡ P,JXIK eJ

n.
The equation of motion is obtained as

1

a3

d

dt

[

a3(2KmrDtQm + NmrQm)
]

− (2KmnZnr + Nmr)DtQm

− (2Mmr + NmnZmr)Qm +
2

a2
∂2Qr = 0 . (39)
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IV. LINEAR PERTURBATIONS

In this section, we study the linear order perturbations using the second order action derived in the previous section.

A. K-inflation

Let us consider K-inflation models where P (XIJ , φI) is a function of only the trace X = XIJGIJ(φK) of the kinetic
terms where GIJ (φK) is a metric in the field space:

P (XIJ , φI) = P̃ (X,φI). (40)

The derivatives of P can be evaluated as

P,XIJ = GIJ P̃,X , (41)

P,I =
1

2
GJK,I φ̇

J φ̇K P̃,X + P̃,I , (42)

P,XIJXKL = GIJGKLP̃,XX , (43)

P,XIJK =
1

2
GLM,Kφ̇

Lφ̇MGIJ P̃,XX +GIJ,K P̃,X +GIJ P̃,XK , (44)

P,IJ =
1

4
GKL,IGMN,J φ̇

K φ̇Lφ̇M φ̇N P̃,XX +
1

2
GKL,IJ φ̇

K φ̇LP̃,X

+
1

2
φ̇M φ̇N (GMN,J P̃,XI +GMN,I P̃,XJ) + P̃,IJ , (45)

and the sound speed is defined as

c2s ≡ P̃,X

P̃,X + 2XP̃,XX

. (46)

In terms of the decomposed field, the second order action can be written as

S(2) =
1

2

∫

dtd3xa3

[{

δmn +

(

1

c2s
− 1

)

δ1mδ1n

}

(DtQm)(DtQn)

− 1

a2
δmn∂iQm∂

iQn −MmnQmQn + NmnQn(DtQm)

]

, (47)

where we do not show the explicit forms of Mmn and Nmn.
The sound speed agrees with the adiabatic sound speed defined by c2s = dP/dE. The fact that the sound speeds for

the entropy perturbations are unity has been recognized in Ref. [29]. This is because the non-trivial second derivative
of P only affects the adiabatic perturbations, which is the consequence of the fact that the entropy field s satisfies
ṡ = 0 in the background and thus it has no first order perturbations.

B. DBI-inflation

An interesting class of models is the DBI-inflation which describes the motion of a D3 brane in a higher dimensional
spacetime. The DBI action is given by

S = −
∫

d4x
1

f(φK)

√

−det[gµν + f(φK)GIJ (φK)∂µφI∂νφJ ]. (48)

Recently it was pointed out by Ref. [31] that the multi-field DBI-inflation is not included in the multi-field K-inflation
discussed in the previous subsection. Indeed, P (XIJ) is not a function of X , but it is given by

P (XIJ , φI) = P̃ (X̃, φI), X̃ =
(1 −D)

2f
, (49)
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where

D = det(δI
J − 2fXI

J)

= 1 − 2fGIJX
IJ + 4f2X

[I
I X

J]
J − 8f3X

[I
I X

J
JX

K]
K + 16f4X

[I
I X

J
JX

K
KX

L]
L . (50)

In the background, X̃ = X . However, this does not mean that the full action is a function of X only. The DBI action
takes a specific form of P̃

P̃ (X̃, φI) = − 1

f

(
√

1 − 2fX̃ − 1

)

− V (φI), (51)

where we allow for a potential V (φI). The sound speed is defined as

c2s ≡
P̃,X̃

P̃,X̃ + 2XP̃,X̃X̃

. (52)

The derivatives of P can be calculated as

P,XIJ = P̃,X̃

(

dX̃

dXIJ

)

, (53)

P,XIJ XKL = P̃,X̃X̃

(

dX̃

dXIJ

)(

dX̃

dXKL

)

+ P̃,X̃

(

d2X̃

dXIJdXKL

)

, (54)

where

dX̃

dXIJ
= c2sGIJ + 2fXIJ , (55)

d2X̃

dXIJdXKL
= −2f

(

GIJGKL − 1

2
GIKGJL − 1

2
GILGJK

)

+O(XIJ ) . (56)

Here we do not explicitly write down the higher order terms in XIJ in the second derivative as they will not contribute
to the final result. In the following, we will omit these terms. We can also show that

P,I =
1

2
GJK,I φ̇

J φ̇K P̃,X̃ + P̃,I , (57)

P,IJ =
1

4
GKL,IGMN,J φ̇

K φ̇Lφ̇M φ̇N P̃,X̃X̃ +
1

2
GKL,IJ φ̇

K φ̇LP̃,X̃

+
1

2
φ̇M φ̇N (GMN,J P̃,X̃I +GMN,IP̃,X̃J ) + P̃,IJ , (58)

P,XIJ K =
(

(1 − 2fX)GIJ,K − 2f,KXGIJ − 2fGLM,KX
LMGIJ

2f,KXIJ + 2fGIL,KX
L
J + 2fGJM,KX

M
I

)

P̃,X̃

+(c2sGIJ + 2fXIJ)

(

1

2
GLM,Kφ̇

Lφ̇M P̃,X̃X̃ + P̃,X̃K

)

. (59)

It is worth noting that even though P,XIJK seems to be a bit complicated, we can show that

P,XIJ K φ̇
J =

1

2
GLM,K φ̇

Lφ̇M φ̇I P̃,X̃X̃ + φ̇I P̃,X̃K +GIJ,K φ̇
J P̃,X̃ , (60)

which is just the same form as the K-inflation case. We can also show that

P,XIJ φ̇I φ̇J = 2XP̃,X̃ . (61)

The orthonormality conditions for the basis give

eI
nemI =

1

P̃,X̃c
2
s

δmn − 1

P̃,X̃

1 − c2s
c2s

δm1δn1 . (62)
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Using these results, the second order action can be written in terms of the decomposed perturbations as

S(2) =
1

2

∫

dtd3xa3

[

1

c2s
δmn(DtQm)(DtQn) − 1

a2
δmn∂iQm∂

iQn

−MmnQmQn + NmnQn(DtQm)

]

. (63)

Unlike the K-inflation models, all field perturbations have the same sound speeds as was pointed out by Ref. [31].
In order to understand the difference between K-inflation and the DBI-inflation, we will consider a generalized model
where both cases are included.

C. Generalized case

Let us consider models described by

P (XIJ , φI) = P̃ (Y, φI) , (64)

where

Y = GIJ (φK)XIJ +
b(φK)

2
(X2 −XJ

I X
I
J) . (65)

The functional form of Y is chosen so that Y = X ≡ GIJX
IJ in the background as in the DBI-inflation model. This

model includes as particular cases the K-inflation model for b = 0 and the DBI-inflation for b = −2f and if P̃ has
the DBI form. This might be surprising as the DBI action contains additional terms of order f2 and f3 in X̃ (see
equations (49) and (50)), but it turns out that these terms do not contribute to the second order action and the
leading order third order action.

Following a similar procedure to the previous subsection, the second order action can be written in terms of the
decomposed perturbations as

S(2) =
1

2

∫

dtd3xa3

[

{

δmn +
2XP̃,Y Y

P̃,Y

δ1mδ1n +
bX

1 + bX
(δn1δm1 − δmn)

}

(DtQm)(DtQn)

− 1

a2
δmn∂iQm∂

iQn −MmnQmQn + NmnQn(DtQm)

]

, (66)

Now we are in a position to explain the difference between K-inflation and DBI-inflation. As in the K-inflation case,
the non-trivial second derivative of P affects only the adiabatic perturbations. On the other hand, the non-linear
terms of XIJ in Y only affects the entropy perturbations as they vanish in the background. Then the sound speed
for adiabatic perturbations c2ad and for entropy perturbations c2en are given by

c2ad ≡ P̃,Y

P̃,Y + 2XP̃,Y Y

, c2en ≡ 1 + bX , (67)

and they are independently determined by P̃,Y Y and d2Y/(dXIJdXKL) respectively. Thus in general they are different.
Let us derive the condition under which the two sound speeds are the same, i.e., c2ad = c2en. This condition is given by

2X
P̃,Y Y

P̃,Y

= − bX

1 + bX
. (68)

Then we find that the DBI action is a solution of this equation where b = −2f [39].

V. THE LEADING ORDER IN SLOW-ROLL THREE POINT FUNCTION

In this section, we will calculate the leading order in slow-roll third order action for the generalized model of the
previous subsection and then we shall calculate the leading order three point function for both adiabatic and entropy
directions. Finally we will obtain the three point function of the comoving curvature perturbation.
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A. Approximations: slow-roll

In order to control the calculations and to obtain analytical results we need to make use of some approximations.
We will use the slow-roll approximation, where we define a set of parameters and assume that these parameters are
always small until the end of inflation. We define the slow-roll parameters as

ǫ ≡ − Ḣ

H2
=
XP̃,Y

H2
, η ≡ ǫ̇

ǫH
, (69)

χad ≡ ċad

cadH
, χen ≡ ċen

cenH
. (70)

It is important to note that these slow-roll parameters are more general than the usual slow-roll parameters and that
their smallness does not necessarily imply that the fields are rolling slowly. Assuming that the parameters χad and
χen are small implies that the rates of change of the adiabatic and entropy sound speeds are small, but the sound
speeds themselves can have any value between zero and one.

It is convenient to define a parameter that describes the non-linear dependence of the lagrangian on the kinetic
term as

λ ≡ 2

3
X3P̃,Y Y Y +X2P̃,Y Y . (71)

We will also assume that the rate of change of this new parameter is small, as given by

l ≡ λ̇

λH
. (72)

At the end of this section, we will show that the size of the leading order three point function of the fields is fully
determined by five parameters evaluated at horizon crossing: ǫ, λ, H and both sound speeds.

It turns out that the equations of motion for both adiabatic and entropy perturbations at first order form a coupled
system of second order linear differential equations, see Appendix for details. In general, the coupling (denoted by
ξ in equation (A10)) between adiabatic and entropy modes cannot be neglected but in this work we will study the
simpler decoupled case, where we assume that ξ is small when the scales of interest cross outside the sound horizons,
i.e., we will assume that ξ ∼ O(ǫ). With these approximations the adiabatic and entropy modes are decoupled and
the system of equations of motion can be solved analytically. For simplicity, we will also assume that the mass term
present in the entropy equation of motion is small, i.e., µ2

s/H
2 ≪ 1 (refer to Appendix for more details). When

calculating the leading order three point functions, we assume that the quantities related to the time derivatives of
the basis vectors given by Zmn are also slow-roll suppressed. Finally, the calculation of the three point functions in
the next subsections is valid in the limit of small sound speeds. Our results will also include sub-leading terms of
O(1) but these terms will in general (for small sound speeds) receive corrections coming from terms of the order of
ǫ/c2s, that we have neglected.

B. Third order action at leading order

At leading order in the previous approximations, the third order action for the general model (1) is calculated as

S(3) =
1

2

∫

dx3dta3

[

P,XIKXJL φ̇(IQ̇K)Q̇JQ̇L +
1

3
P,XIKXJLXMN φ̇(IQ̇K)φ̇(JQ̇L)φ̇(M Q̇N)

− 1

a2
P,XIKXJL φ̇(IQ̇K)∂iQ

J∂iQL

]

. (73)

After decomposition into the new adiabatic/entropy basis the third order action can be written as

S(3) =

∫

dx3dta3

[

1

2
ΞnmlQ̇nQ̇mQ̇l −

1

2a2
ΥnmlQ̇n(∂iQm)(∂iQl)

]

, (74)
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where we define the coefficients Ξnml and Υnml as

Ξnml = P,XIKXJL

√

P,XMN φ̇M φ̇Ne
(I
1 e

K)
(n e

J
me

L
l)

+
1

3
P,XIKXJLXMN (P,XPQ φ̇P φ̇Q)3/2e

(I
1 e

K)
n e

(J
1 e

L)
m e

(M
1 e

N)
l , (75)

Υnml = P,XIKXJL

√

P,XMN φ̇M φ̇Ne
(I
1 e

K)
n eJ

me
L
l . (76)

We shall now give some useful formulae of the previous quantities for the different inflationary models considered in
this work.

1. K-inflation

For the K-inflation model we have

Ξnml = (2XP̃,X)−
1

2

(

2XP̃,XX

P̃,X

δ1(nδml) +
4

3

X2P̃,XXX

P̃,X

δn1δm1δl1

)

, (77)

Υnml = (2XP̃,X)−
1

2

2XP̃,XX

P̃,X

δn1δml . (78)

2. DBI-inflation

For the DBI-inflation scenario they are given by

Ξnml = (2XP̃,X̃)−
1

2

1 − c2s
c4s

δ1(nδml) , (79)

Υnml = (2XP̃,X̃)−
1

2

(

1 − c2s
c2s

δn1δml − 2
1 − c2s
c2s

(

δn1δml − δn(mδl)1
)

)

, (80)

where c2s should be understood as the sound speed defined in Eq. (52).

3. Generalized case

For the generalized case of subsection IVC, Ξnml and Υnml can be written as

Ξnml = (2XP̃,Y )−
1

2

[

(1 − c2ad)

c2adc
2
en

δ1(nδml) +

(

4

3

X2P̃,Y Y Y

P̃,Y

− (1 − c2ad)(1 − c2en)

c2adc
2
en

)

δn1δm1δl1

]

, (81)

Υnml = (2XP̃,Y )−
1

2

(

1 − c2ad

c2ad

δn1δml −
2(1 − c2en)

c2en

(

δn1δml − δn(mδl)1
)

)

, (82)

and it is obvious that the DBI-inflation is a specific case of the general model with c2ad = c2en = c2s.

C. The three point functions of the fields

In this subsection, we derive the three point functions of the adiabatic and entropy fields in the generalized case and
at leading order in slow-roll and in the small sound speeds limit. We consider the two-field case with the adiabatic
field σ and the entropy field s.

The perturbations are promoted to quantum operators like

Qn(τ,x) =
1

(2π)3

∫

d3
kQn(τ,k)eik·x, (83)
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where

Qn(τ,k) = un(τ,k)an(k) + u∗n(τ,−k)a†n(−k). (84)

an(k) and a†n(−k) are the annihilation and creation operator respectively, that satisfy the usual commutation relations

[

an(k1), a†m(k2)
]

= (2π)3δ(3)(k1 − k2)δnm, [an(k1), am(k2)] =
[

a†n(k1), a†m(k2)
]

= 0. (85)

At leading order the solution for the mode functions is (see Appendix for details)

un(τ,k) = An
1

k3/2
(1 + ikcnτ) e

−ikcnτ , (86)

where cn stands for either the adiabatic or the entropy sound speeds.
The two point correlation function is

〈0|Qn(τ = 0,k1)Qm(τ = 0,k2)|0〉 = (2π)3δ(3)(k1 + k2)PQn

2π2

k3
1

δnm, (87)

where the power spectrum is defined as

PQn
=

|An|2
2π2

, |Aσ|2 =
H2

2cad
, |As|2 =

H2

2cen
, (88)

and it should be evaluated at the time of horizon crossing cn∗k1 = a∗H∗

The vacuum expectation value of the three point operator in the interaction picture (at first order) is [34, 40]

〈Ω|Ql(t,k1)Qm(t,k2)Qn(t,k3)|Ω〉 = −i
∫ t

t0

dt̃〈0|
[

Ql(t,k1)Qm(t,k2)Qn(t,k3), HI(t̃)
]

|0〉, (89)

where t0 is some early time during inflation when the field’s vacuum fluctuation are deep inside the horizons, t is
some time after horizon exit. |Ω〉 is the interacting vacuum which is different from the free theory vacuum |0〉. If
one uses conformal time, it’s a good approximation to perform the integration from −∞ to 0 because τ ≈ −(aH)−1.
HI denotes the interaction hamiltonian and it is given by HI = −L3, where L3 is the lagrangian obtained from the
action (74).

At this order, the only non-zero three point functions are

〈Ω|Qσ(0,k1)Qσ(0,k2)Qσ(0,k3)|Ω〉 = (2π)3δ(3)(k1 + k2 + k3)
2cad|Aσ|6

H

1

Π3
i=1k

3
i

1

K

×
[

6c2ad(C3 + C4)
k2
1k

2
2k

2
3

K2
− C1k

2
1k2 · k3

(

1 +
k2 + k3

K
+ 2

k2k3

K2

)

+2 cyclic terms

]

, (90)

〈Ω|Qσ(0,k1)Qs(0,k2)Qs(0,k3)|Ω〉 = (2π)3δ(3)(k1 + k2 + k3)
|Aσ |2|As|4

H

1

Π3
i=1k

3
i

1

K̃

×
[

C2c
2
enk

2
3k1 · k2

(

1 +
cadk1 + cenk2

K̃
+

2cadcenk1k2

K̃2

)

+ (k2 ↔ k3)

+4C3c
2
adc

4
en

k2
1k

2
2k

2
3

K̃2
− 2(C1 + C2)c

2
adk

2
1k2 · k3

(

1 + cen
k2 + k3

K̃
+ 2c2en

k2k3

K̃2

)]

,

(91)

where K = k1 + k2 + k3, K̃ = cadk1 + cen(k2 + k3), cyclic terms means cyclic permutations of the three wave vectors
and (k2 ↔ k3) denotes a term like the preceding one but with k2 and k3 interchanged. The pure adiabatic three point
function is evaluated at the moment τ∗ at which the total wave number K exits the horizon, i.e., when Kcad∗ = a∗H∗.
Because of the different propagation speeds, the adiabatic and entropy modes become classical at different times,
however at leading order we assume that the background dependent coefficients of (91) do not vary with time and so
they can also be evaluated at the moment τ∗.
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The different constants CN are given by

C1 = (2H2ǫ)−
1

2

1 − c2ad

c2ad

, C2 = −2(2H2ǫ)−
1

2

1 − c2en

c2en

,

C3 = (2H2ǫ)−
1

2

1 − c2ad

c2adc
2
en

, C4 = (2H2ǫ)−
1

2

(

2λ

H2ǫ
− 1 − c2ad

c2adc
2
en

)

. (92)

D. The three point function of the comoving curvature perturbation

In this subsection, we calculate the leading order in slow-roll three point function of the comoving curvature
perturbation in terms of three point function of the fields obtained in the previous subsection.

During the inflationary era the comoving curvature perturbation is given by

R =
H

σ̇

Qσ
√

P̃,Y

. (93)

It is convenient to define the entropy perturbation S as

S =
H

σ̇

Qs
√

P̃,Y

√

cen

cad
, (94)

so that PS∗
≃ PR∗

, where the subscript ∗ means that the quantity should be evaluated at horizon crossing.
In this work we will ignore the possibility that the entropy perturbations during inflation can lead to primordial

entropy perturbations that could be observable in the CMB. But we shall consider the effect of entropy perturbations
on the final curvature perturbation. We will follow the analysis of Wands et.al. [41], where it has been shown that
even on large scales the curvature perturbation can change in time because of the presence of entropy perturbations.
The way the entropy perturbations are converted to curvature perturbations is model dependent but it was shown
that this model dependence can be parameterized by a transfer coefficient TRS [41] like

R = R∗ + TRSS∗ = AσQσ∗ + AsQs∗, (95)

with

Aσ =





H

σ̇
√

P̃,Y





∗

, As = TRS





H

σ̇
√

P̃,Y

√

cen

cad





∗

. (96)

Using the previous expressions we can now relate the three point function of the curvature perturbation to the
three point functions of the fields obtained in the previous subsection. The three point function of the curvature
perturbation is given by

〈R(k1)R(k2)R(k3)〉 = A3
σ〈Qσ(k1)Qσ(k2)Qσ(k3)〉 + AσA2

s (〈Qσ(k1)Qs(k2)Qs(k3)〉 + 2 perms.) . (97)

For the DBI-inflation case the previous equation can be simplified and the total momentum dependence of the three
point function of the comoving curvature perturbation is the same as in single field DBI [31]. For our general model
this is no longer the case, i.e., the different terms of the previous equation have different momentum dependence. Once
again one can see that DBI-inflation is a very particular case and more importantly it provides a distinct signature
that enables us to distinguish it from other more general models.

VI. CONCLUSION

In this paper, we studied the non-gaussianity from the bispectrum in general multi-field inflation models with a
generic kinetic term. Our model is fairly generic including the K-inflation and the DBI-inflation as special cases. We
derived the second and third order actions for the perturbations including the effect of gravity. The second order
action is written in terms of adiabatic and entropy perturbations. It was shown that the sound speeds for these
perturbations are in general different. In the K-inflation the entropy perturbations propagate at the speed of light.
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The DBI-inflation is a special case where the sound speed for the entropy perturbations is the same as the adiabatic
sound speed. We found that, from the requirement that the sound speeds for adiabatic and entropy perturbations are
the same, we obtain the DBI form for the action.

Then we derive the three point function in the small sound speeds limit at leading order in slow-roll expansion. In
these approximations there exists a three point function between adiabatic perturbationsQσ and entropy perturbations
Qs, 〈Qσ(k1)Qs(k2)Qs(k3)〉, in addition to the pure adiabatic three point function. This mixed contribution has a
different momentum dependence if the sound speed for the entropy perturbations is different from the adiabatic one.
This provides a possibility to distinguish between the multi-field models and the single field models. Unfortunately,
in the multi-field DBI case, the sound speed for the entropy perturbation is the same as the adiabatic one and the
mixed contribution only changes the amplitude of the three point function. This could help to ease the constraints
on DBI-inflation as is discussed in Ref. [31].

In order to calculate the effect of the entropy perturbations on the curvature perturbation at the recombination, we
need to specify a model that describes how the entropy perturbations are converted to the curvature perturbations.
In addition, even during inflation, if the trajectory in field space changes non-trivially, the entropy perturbations can
be converted to the curvature perturbation. In this paper, we assumed that this does not happen and neglected a
mixing between the curvature and entropy perturbations. It would be interesting to study this mixing in specific
string theory motivated models.

Note added: While we were writing up this work, similar results appeared on the arXiv [44].
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APPENDIX A: EQUATIONS OF MOTION FOR THE FLUCTUATIONS

Here, we derive the equations of motion for linear perturbations for the generalized model introduced in IVC. In
terms of the field space “covariant quantities” [42] which are given by

Dtφ̇
I ≡ φ̈I + ΓI

JK φ̇
J φ̇K , (A1)

DtQ
I ≡ Q̇I + ΓI

JK φ̇
JQK , (A2)

DIDJ P̃ ≡ P̃,IJ − ΓK
IJ P̃,K , (A3)

RI
KLJ ≡ ΓI

KJ,L − ΓI
KL,J + ΓI

LMΓM
JK − ΓI

JMΓM
LK , (A4)

(ΓI
JK denotes the Christoffel symbols associated with the field space metric GIJ ), the second order action can be

expressed as

S(2) =
1

2

∫

dtd3xa3

[

(

P̃,YGIJ + P̃,Y Y φ̇I φ̇J

)

DtQ
IDtQ

J

− 1

a2
P̃,Y [(1 + bX)GIJ − bXIJ ] ∂iQ

I∂iQJ − M̄IJQ
IQJ + 2P̃,Y J φ̇IQ

JDtQ
I

]

,

(A5)

with the effective squared mass matrix

M̄IJ = −DIDJ P̃ − P̃,Y RIKLJ φ̇
K φ̇L +

XP̃,Y

H
(P̃,Y J φ̇I + P̃,Y I φ̇J )

+
XP̃ 3

,Y

2H2
(1 − 1

c2ad

)φ̇I φ̇J − 1

a3
Dt

[

a3

2H
P̃ 2

,Y

(

1 +
1

c2ad

)

φ̇I φ̇J

]

. (A6)

It is worth noting that except for the coefficients of the kinetic term and the gradient term, this action is the same
as the K-inflation case and DBI-inflation case which are derived in [29] and [31], respectively.
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From now on we will derive the equations of motion for the fluctuations. For simplicity, let us now restrict our
attention to the two field case (I = 1, 2). Then, the perturbations can be decomposed into QI = Qσe

I
σ +Qse

I
s, where

eI
σ = eI

1 and eI
s is the unit vector orthogonal to eI

σ. As in standard inflation, it is more convenient to use conformal
time τ =

∫

dt/a(t) and define the canonically normalized fields [43]

vσ ≡ a

cad
Qσ , vs ≡ a

cen
Qs . (A7)

From the similar calculations with K-inflation and DBI-inflation cases analyzed by [29] and [31], respectively, we
find the equations of motion for vσ and vs as

v′′σ − ξv′s +

(

c2adk
2 − z′′

z

)

vσ − (zξ)′

z
vs = 0 , (A8)

v′′s + ξv′σ +

(

c2enk
2 − α′′

α
+ a2µ2

s

)

vs −
z′

z
ξvσ = 0 , (A9)

where the primes denote the derivative with respect to τ and

ξ ≡ a

σ̇P̃,Y cad

[

(1 + c2ad)P̃,s − c2adσ̇
2P̃,Y s

]

, (A10)

µ2
s ≡ − P̃,ss

P̃,Y

+
1

2
σ̇2R̃− 1

2c2adX

P̃ 2
,s

P̃ 2
,Y

+ 2
P̃,Y sP̃,s

P̃ 2
,Y

, (A11)

z ≡ aσ̇

cadH

√

P̃,Y , α ≡ a

√

P̃,Y , (A12)

with

σ̇ ≡
√

2X , P̃,s ≡ P̃,Ie
I
s

√

P̃,Y cen , P̃,Y s ≡ P̃,Y Ie
I
s

√

P̃,Y cen , P̃,ss ≡ (DIDJ P̃ )eI
se

J
s P̃,Y c

2
en , (A13)

and R̃ denotes the Riemann scalar curvature of the field space.
If we assume that the effect of the coupling ξ can be neglected when the scales of interest cross the sound horizons

the two degrees of freedom are decoupled and the system can be easily quantized. If we further assume the slow-roll
approximations, the time evolution of H , cad, and σ̇ is small with respect to that of the scale factor and the relations
z′′/z ≃ 2/τ2 and α′′/α ≃ 2/τ2 hold (see section V.A for these approximations). The solutions of (A8) and (A9) with
the Bunch-Davies vacuum initial conditions are thus given by

vσk ≃ 1√
2kcad

e−ikcadτ

(

1 − i

kcadτ

)

, (A14)

vsk ≃ 1√
2kcen

e−ikcenτ

(

1 − i

kcenτ

)

, (A15)

when µ2
s/H

2 is negligible for the entropy mode.
Therefore, the power spectra for Qσ and Qs are obtained as

PQσ
≃ H2

4π2cad
, PQs

≃ H2

4π2cen
, (A16)

which are evaluated at sound horizon crossing. The ratio of the power spectra for the adiabatic and entropy modes
is thus given by PQs

/PQσ
= cad/cen.
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