46 research outputs found

    Modelling of pyrocarbon chemical vapor infiltration

    Get PDF
    International audienceThe chemical vapor infiltration (CVI) of pyrocarbon is used to produce carbon matrix of C/C composites. This process involves complex physico-chemical phenomena such as the transport of gas mixtures (hydrocarbons and hydrogen) in the reactor and inside the fibrous preform, chemical reactions (pyrolysis and deposition), and the structural evolution of the preform. A global modelling approach has been developed for isobaric CVI. The most difficult point is to find a realistic chemical model for pyrocarbon deposition chemistry, simple enough to be implemented in a 2D or 3D fluid dynamics code. Such a model is proposed in this study, featuring a group of light species leading to smooth laminar pyrocarbon, a group of heavier species (polycyclic hydrocarbons) leading to rough laminar pyrocarbon, and associated homogeneous and heterogeneous reaction kinetics. This model has been developed and validated according to results of pyrocarbon CVD experiments from propane, and isothermal, isobaric CVI in a 1D model porous medium made of compact stacks of 100 ÎĽm diameter filaments

    La croissance des pyrocarbones

    Get PDF
    Cet article fait la synthèse des recherches récentes dans le domaine des pyrocarbones. Ce sont les formes solides de carbone qui se déposent sur une surface chaude par craquage d'hydrocarbures liquides ou gazeux au-delà de 900 °C. Les applications touchent les matériaux composites, les biomatériaux ou les applications nucléaires. Très récemment, une étape importante a été franchie dans la connaissance de ces carbones grâce à une démarche pluridisciplinaire. Il en résulte une classification basée sur les mesures des défauts de réseau et d'anisotropie par spectroscopie Raman. Elle permet de relier de façon satisfaisante les mécanismes de croissance, les structures et les propriétés des pyrocarbones de basse température

    Correlation between homogeneous propane pyrolysis and pyrocarbon deposition

    Get PDF
    International audiencePyrocarbon deposition through propane pyrolysis is studied in a 1-D hot-wall CVD furnace. The gas-phase pyrolysis is modelled with a partially reduced kinetic mechanism leading to polycyclic aromatic compounds (PAHs). The C2-C4 and C3 reaction paths are in competition for benzene formation. There is also an independent C3-C5 path leading to naphthalene. The gas-phase concentrations are correlated with experimental data including in-situ FTIR spectra intensities, pyro- carbon deposition rates, and pyrocarbon nanotextures. Rough Laminar pyrocarbon deposition appears to be more related to PAHs than Smooth Laminar pyrocarbon

    Kinetic modeling of gas-phase decomposition of propane : correlation with pyrocarbon deposition

    Get PDF
    International audienceA chemical kinetic model for gas-phase pyrolysis of propane has been set up, partially reduced, and validated against FTIR measurements in a tubular hot-wall reactor at P = 2 kPa, and T = 900 to 1400 K. It confirms the notion of "maturation" from propane to lighter hydrocarbons, the to aromatic compounds and PAHs. The gas-phase composition above the substrate has been correlated to pyrocarbon deposition rates and to the deposit nanostructure. It is confirmed that the growth of the rough laminar (RL) form would be related to heavier gaseous species than for the smooth laminar (SL) form

    LPCVD and characterization of boron-containing pyrocarbon materials

    Get PDF
    International audiencePyrocarbon materials containing various amounts of boron have been prepared by LPCVD from BCl3–C3H8–H2 precursor mixtures. The growth rate is increased with respect to pure pyrocarbon deposition. By increasing BCl3 / (C3H8 + BCl3) ratio up to 85%, the incorporation of boron can reach 33 at.%. A small amount of boron (e.g. 8 at.%) highly enhances the anisotropy of pyrocarbon, as evidenced by optical microscopy, X-ray diffraction and transmission electron microscopy (selected area diffraction and lattice fringes techniques). X-ray photoelectron spectroscopy has shown that a large fraction of the boron atoms are included by substitution in the carbon layers, the remaining boron atoms belongs to a boron-rich amorphous part of the material. As boron content increases beyond 8 at.%, the anisotropy of the boron-rich pyrocarbon decreases, due to the limited growth and stacking of the carbon layers. Also, amorphous boron-rich regions are more and more abundant as the total amount of boron increases. The oxidation resistance of the C(B) materials is better than that of pure pyrocarbon. It is mainly due to the improvement of the structural organization for the low boron content materials and to the coating of the whole material with a stable boron oxide for materials with a higher boron content

    Experimental and theoretical investigation of BCl_3 decomposition in H_2

    Get PDF
    International audienceA combined experimental and theoretical study of the homogeneous decomposition of BCl3 in a H2 carrier gas is presented. A detailed description of the B/Cl/H thermodynamic equilibrium is first obtained from ab-initio calculations from which a restricted low energy chemical mechanism is identified to model the decomposition of BCl3. Transition state theory is then invoked to obtain reaction rates and the resulting kinetic mechanism is incorporated in a 1D model of a CVD reactor. Comparison of calculated steady state concentrations with in-situ FT-IR measurements shows a good agreement at low temperatures, thus validating the kinetic model. The divergence observed at higher temperatures is attributed to boron deposition

    CVD and CVI of pyrocarbon from various precursors

    Get PDF
    International audienceThe control of pyrocarbon (pyC) chemical vapor infiltration (CVI) is a key issue in the processing of high-performance C/C composites with applications in aerospace parts and braking technology. For years, the precise investigation of deposition kinetics and pyC nanometerscale anisotropy has been rehearsed in chemical vapor deposition (CVD) and several variants of CVI with various pore sizes, and using mostly propane, propylene, and methane as source precursors. A literature survey and the analysis of recent experimental data have helped to understand better the role of gas-phase intermediate species in the various nanotextural transitions; a coherent modeling frame, which is suitable for propane, propylene, and methane—the latter having a neatly lower reactivity—has been set up and tested against experimental results from independent teams. The relation between nanotexture and processing conditions is then explained

    A forward genetic screen identifies modifiers of rocaglate responsiveness

    Get PDF
    Rocaglates are a class of eukaryotic translation initiation inhibitors that are being explored as chemotherapeutic agents. They function by targeting eukaryotic initiation factor (eIF) 4A, an RNA helicase critical for recruitment of the 40S ribosome (and associated factors) to mRNA templates. Rocaglates perturb eIF4A activity by imparting a gain-of-function activity to eIF4A and mediating clamping to RNA. To appreciate how rocaglates could best be enabled in the clinic, an understanding of resistance mechanisms is important, as this could inform on strategies to bypass such events as well as identify responsive tumor types. Here, we report on the results of a positive selection, ORFeome screen aimed at identifying cDNAs capable of conferring resistance to rocaglates. Two of the most potent modifiers of rocaglate response identified were the transcription factors FOXP3 and NR1I3, both of which have been implicated in ABCB1 regulation-the gene encoding P-glycoprotein (Pgp). Pgp has previously been implicated in conferring resistance to silvestrol, a naturally occurring rocaglate, and we show here that this extends to additional synthetic rocaglate derivatives. In addition, FOXP3 and NR1I3 impart a multi-drug resistant phenotype that is reversed upon inhibition of Pgp, suggesting a potential therapeutic combination strategy.R35 GM118173 - NIGMS NIH HHS; U01 TR002625 - NCATS NIH HHS; FDN-148366 - CIHRPublished versio
    corecore