9,682 research outputs found
Distance measures to compare real and ideal quantum processes
With growing success in experimental implementations it is critical to
identify a "gold standard" for quantum information processing, a single measure
of distance that can be used to compare and contrast different experiments. We
enumerate a set of criteria such a distance measure must satisfy to be both
experimentally and theoretically meaningful. We then assess a wide range of
possible measures against these criteria, before making a recommendation as to
the best measures to use in characterizing quantum information processing.Comment: 15 pages; this version in line with published versio
Examination of actin and microtubule dependent APC localisations in living mammalian cells
Abstract (provisional)
Background
The trafficking of the adenomatous polyposis coli (APC) tumour suppressor protein in mammalian cells is a perennially controversial topic. Immunostaining evidence for an actin-associated APC localisation at intercellular junctions has been previously presented, though live imaging of mammalian junctional APC has not been documented.
Results
Using live imaging of transfected COS-7 cells we observed intercellular junction-associated pools of GFP-APC in addition to previously documented microtubule-associated GFP-APC and a variety of minor localisations. Although both microtubule and junction-associated populations could co-exist within individual cells, they differed in their subcellular location, dynamic behaviour and sensitivity to cytoskeletal poisons. GFP-APC deletion mutant analysis indicated that a protein truncated immediately after the APC armadillo repeat domain retained the ability to localise to adhesive membranes in transfected cells. Supporting this, we also observed junctional APC immunostaining in cultures of human colorectal cancer cell line that express truncated forms of APC.
Conclusions
Our data indicate that APC can be found in two spatially separate populations at the cell periphery and these populations can co-exist in the same cell. The first localisation is highly dynamic and associated with microtubules near free edges and in cell vertices, while the second is comparatively static and is closely associated with actin at sites of cell-cell contact. Our imaging confirms that human GFP-APC possesses many of the localisations and behaviours previously seen by live imaging of Xenopus GFP-APC. However, we report the novel finding that GFP-APC puncta can remain associated with the ends of shrinking microtubules. Deletion analysis indicated that the N-terminal region of the APC protein mediated its junctional localisation, consistent with our observation that truncated APC proteins in colon cancer cell lines are still capable of localising to the cell cortex. This may have implications for the development of colorectal cancer
Memory texts and memory work: Performances of memory in and with visual media
The online version of this article can be found at: http://mss.sagepub.com/content/early/2010/05/24/175069801037003
Manipulating biphotonic qutrits
Quantum information carriers with higher dimension than the canonical qubit
offer significant advantages. However, manipulating such systems is extremely
difficult. We show how measurement induced non-linearities can be employed to
dramatically extend the range of possible transforms on biphotonic qutrits; the
three level quantum systems formed by the polarisation of two photons in the
same spatio-temporal mode. We fully characterise the biphoton-photon
entanglement that underpins our technique, thereby realising the first instance
of qubit-qutrit entanglement. We discuss an extension of our technique to
generate qutrit-qutrit entanglement and to manipulate any bosonic encoding of
quantum information.Comment: 4 pages, 4 figure
Volume-preserving normal forms of Hopf-zero singularity
A practical method is described for computing the unique generator of the
algebra of first integrals associated with a large class of Hopf-zero
singularity. The set of all volume-preserving classical normal forms of this
singularity is introduced via a Lie algebra description. This is a maximal
vector space of classical normal forms with first integral; this is whence our
approach works. Systems with a non-zero condition on their quadratic parts are
considered. The algebra of all first integrals for any such system has a unique
(modulo scalar multiplication) generator. The infinite level volume-preserving
parametric normal forms of any non-degenerate perturbation within the Lie
algebra of any such system is computed, where it can have rich dynamics. The
associated unique generator of the algebra of first integrals are derived. The
symmetry group of the infinite level normal forms are also discussed. Some
necessary formulas are derived and applied to appropriately modified
R\"{o}ssler and generalized Kuramoto--Sivashinsky equations to demonstrate the
applicability of our theoretical results. An approach (introduced by Iooss and
Lombardi) is applied to find an optimal truncation for the first level normal
forms of these examples with exponentially small remainders. The numerically
suggested radius of convergence (for the first integral) associated with a
hypernormalization step is discussed for the truncated first level normal forms
of the examples. This is achieved by an efficient implementation of the results
using Maple
Quantum process tomography of a controlled-NOT gate
We demonstrate complete characterization of a two-qubit entangling process -
a linear optics controlled-NOT gate operating with coincident detection - by
quantum process tomography. We use maximum-likelihood estimation to convert the
experimental data into a physical process matrix. The process matrix allows
accurate prediction of the operation of the gate for arbitrary input states,
and calculation of gate performance measures such as the average gate fidelity,
average purity and entangling capability of our gate, which are 0.90, 0.83 and
0.73, respectively.Comment: 4 pages, 2 figures. v2 contains new data corresponding to improved
gate operation. Figure quality slightly reduced for arXi
The impact of superphosphate and surface-applied lime on the profitability and sustainability of wool production on the tablelands of NSW
Soil acidification is one of the major forms of soil degradation in higher rainfall areas of the tablelands of NSW. A grazing experiment was conducted near Sutton, NSW, to assess the effect of various rates of superphosphate, lime, sewage ash and stocking rates on wool production and sustainability between 1999 and 2008. The results from the discounted cash flow analysis show that the net present value of the treatment without lime, the lower rate of superphosphate and the lowest stocking rate returned the highest net present value of 278.70/ha and 234.60/ha. The net present value fell by $205.24/ha when the level of superphosphate rate increased to 250kg/ha every year. The net present value decreased as the level of stocking rate increased. We conclude that wool producers will be unlikely to use lime to ameliorate acid soil, even though production will not be sustainable, unless there are more favourable input and commodity prices in the market and government intervention.economic, acid soil, lime, superphosphate, sewage ash, stocking rate, policy,
Generation of Hyperentangled Photons Pairs
We experimentally demonstrate the first quantum system entangled in every
degree of freedom (hyperentangled). Using pairs of photons produced in
spontaneous parametric downconversion, we verify entanglement by observing a
Bell-type inequality violation in each degree of freedom: polarization, spatial
mode and time-energy. We also produce and characterize maximally hyperentangled
states and novel states simultaneously exhibiting both quantum and classical
correlations. Finally, we report the tomography of a 2x2x3x3 system
(36-dimensional Hilbert space), which we believe is the first reported photonic
entangled system of this size to be so characterized.Comment: 5 pages, 3 figures, 1 table, published versio
Demonstration of a simple entangling optical gate and its use in Bell-state analysis
We demonstrate a new architecture for an optical entangling gate that is
significantly simpler than previous realisations, using partially-polarising
beamsplitters so that only a single optical mode-matching condition is
required. We demonstrate operation of a controlled-Z gate in both
continuous-wave and pulsed regimes of operation, fully characterising it in
each case using quantum process tomography. We also demonstrate a
fully-resolving, nondeterministic optical Bell-state analyser based on this
controlled-Z gate. This new architecture is ideally suited to guided optics
implementations of optical gates.Comment: 4 pages, 3 figures. v2: additional author, improved data and figures
(low res), some other minor changes. Accepted for publication in PR
- …
