6,212 research outputs found
Manipulating biphotonic qutrits
Quantum information carriers with higher dimension than the canonical qubit
offer significant advantages. However, manipulating such systems is extremely
difficult. We show how measurement induced non-linearities can be employed to
dramatically extend the range of possible transforms on biphotonic qutrits; the
three level quantum systems formed by the polarisation of two photons in the
same spatio-temporal mode. We fully characterise the biphoton-photon
entanglement that underpins our technique, thereby realising the first instance
of qubit-qutrit entanglement. We discuss an extension of our technique to
generate qutrit-qutrit entanglement and to manipulate any bosonic encoding of
quantum information.Comment: 4 pages, 4 figure
Demonstration of a simple entangling optical gate and its use in Bell-state analysis
We demonstrate a new architecture for an optical entangling gate that is
significantly simpler than previous realisations, using partially-polarising
beamsplitters so that only a single optical mode-matching condition is
required. We demonstrate operation of a controlled-Z gate in both
continuous-wave and pulsed regimes of operation, fully characterising it in
each case using quantum process tomography. We also demonstrate a
fully-resolving, nondeterministic optical Bell-state analyser based on this
controlled-Z gate. This new architecture is ideally suited to guided optics
implementations of optical gates.Comment: 4 pages, 3 figures. v2: additional author, improved data and figures
(low res), some other minor changes. Accepted for publication in PR
Quantum process tomography of a controlled-NOT gate
We demonstrate complete characterization of a two-qubit entangling process -
a linear optics controlled-NOT gate operating with coincident detection - by
quantum process tomography. We use maximum-likelihood estimation to convert the
experimental data into a physical process matrix. The process matrix allows
accurate prediction of the operation of the gate for arbitrary input states,
and calculation of gate performance measures such as the average gate fidelity,
average purity and entangling capability of our gate, which are 0.90, 0.83 and
0.73, respectively.Comment: 4 pages, 2 figures. v2 contains new data corresponding to improved
gate operation. Figure quality slightly reduced for arXi
Volume-preserving normal forms of Hopf-zero singularity
A practical method is described for computing the unique generator of the
algebra of first integrals associated with a large class of Hopf-zero
singularity. The set of all volume-preserving classical normal forms of this
singularity is introduced via a Lie algebra description. This is a maximal
vector space of classical normal forms with first integral; this is whence our
approach works. Systems with a non-zero condition on their quadratic parts are
considered. The algebra of all first integrals for any such system has a unique
(modulo scalar multiplication) generator. The infinite level volume-preserving
parametric normal forms of any non-degenerate perturbation within the Lie
algebra of any such system is computed, where it can have rich dynamics. The
associated unique generator of the algebra of first integrals are derived. The
symmetry group of the infinite level normal forms are also discussed. Some
necessary formulas are derived and applied to appropriately modified
R\"{o}ssler and generalized Kuramoto--Sivashinsky equations to demonstrate the
applicability of our theoretical results. An approach (introduced by Iooss and
Lombardi) is applied to find an optimal truncation for the first level normal
forms of these examples with exponentially small remainders. The numerically
suggested radius of convergence (for the first integral) associated with a
hypernormalization step is discussed for the truncated first level normal forms
of the examples. This is achieved by an efficient implementation of the results
using Maple
Building Digital Identities: The Challenges, Risks and Opportunities of Collecting Behavioural Attributes for new Digital Identity Systems.
The provision of legal identity for all is increasingly viewed as a key mechanism for driving development goals. Behavioural attributes produced through digital interactions may have significant potential for enabling access to a legal identity for all, however the social, legal, and technical affordances and implications remain under-explored.University of Exeter and CoelitionEconomic and Social Research Council (ESRC
Structure and giant magnetoresistance of granular Co-Cu nanolayers prepared by cross-beam PLD
A series of Co_xCu_{100-x} (x = 0, 40...75, 100) layers with thicknesses
in-between 13 nm and 55 nm were prepared on silicon substrates using cross-beam
pulsed laser deposition. Wide-angle X-ray diffraction (WAXRD), transmission
electron microscopy (TEM) and electrical transport measurements revealed a
structure consisting of decomposed cobalt and copper grains with grain sizes of
about 10 nm. The influence of cobalt content and layer thickness on the grain
size is discussed. Electron diffraction (ED) indicates the presence of an
intermetallic Co-Cu phase of Cu3Au structure-type. Thermal treatment at
temperatures between 525 K and 750 K results in the progressive decomposition
of Co and Cu, with an increase of the grain sizes up to about 100 nm. This is
tunable by controlling the temperature and duration of the anneal, and is
directly observable in WAXRD patterns and TEM images. A careful analysis of
grain size and the coherence length of the radiation used allows for an
accurate interpretation of the X-ray diffraction patterns, by taking into
account coherent and non-coherent scattering. The alloy films show a giant
magnetoresistance of 1...2.3 % with the maximum obtained after annealing at
around 725 K.Comment: 9 pages, 9 figure
Experimental demonstration of Shor's algorithm with quantum entanglement
Shor's powerful quantum algorithm for factoring represents a major challenge
in quantum computation and its full realization will have a large impact on
modern cryptography. Here we implement a compiled version of Shor's algorithm
in a photonic system using single photons and employing the non-linearity
induced by measurement. For the first time we demonstrate the core processes,
coherent control, and resultant entangled states that are required in a
full-scale implementation of Shor's algorithm. Demonstration of these processes
is a necessary step on the path towards a full implementation of Shor's
algorithm and scalable quantum computing. Our results highlight that the
performance of a quantum algorithm is not the same as performance of the
underlying quantum circuit, and stress the importance of developing techniques
for characterising quantum algorithms.Comment: 4 pages, 5 figures + half-page additional online materia
Recommended from our members
Calibration of an optical fibre cerebral oximeter using a Monte Carlo model
Recommended from our members
Comparison of non-invasive peripheral venous saturations with venous blood co-oximetry
The estimation of venous oxygen saturations using photoplethysmography (PPG) may be useful as a noninvasive continuous method of detecting changes in regional oxygen supply and demand (e.g. in the splanchnic circulation). The aim of this research was to compare PPG-derived peripheral venous oxygen saturations directly with venous saturation measured from co-oximetry blood samples, to assess the feasibility of non-invasive local venous oxygen saturation. This paper comprises two similar studies: one in healthy spontaneously-breathing volunteers and one in mechanically ventilated anaesthetised patients. In both studies, PPG-derived estimates of peripheral venous oxygen saturations (SxvO2) were compared with co-oximetry samples (ScovO2) of venous blood from the dorsum of the hand. The results were analysed and correlation between the PPG-derived results and co-oximetry was tested for. In the volunteer subjects,moderate correlation (r = 0.81) was seen between SxvO2 values and co-oximetry derived venous saturations (ScovO2), with a mean (±SD) difference of +5.65 ± 14.3% observed between the two methods. In the anaesthetised patients SxvO2 values were only 3.81% lower than SpO2 and tended to underestimate venous saturation (mean difference = –2.67 ± 5.89%) while correlating weakly with ScovO2 (r = 0.10). The results suggest that significant refinement of the technique is needed to sufficiently improve accuracy to produce clinically meaningful measurement of peripheral venous oxygen saturation. In anaesthetised patients the use of the technique may be severely limited by cutaneous arteriovenous shunting
- …