900 research outputs found

    Continuations of Hermitian indefinite functions and corresponding canonical systems : an example

    Get PDF
    M. G. Krein established a close connection between the continuation problem of positive definite functions from a finite interval to the real axis and the inverse spectral problem for differential operators. In this note we study such a connection for the function f(t) = 1 − |t|, t - R, which is not positive definite on R: its restrictions fa := f|(−2a,2a) are positive definite if a ≤ 1 and have one negative square if a > 1. We show that with f a canonical differential equation or a Sturm-Liouville equation can be associated which have a singularity

    Indefinite Hamiltonian systems whose Titchmarsh–Weyl coefficients have no finite generalized poles of non-positive type

    Get PDF
    The two-dimensional Hamiltonian system (*)  y'(x)=zJH(x)y(x),  x∈(a,b), where the Hamiltonian H takes non-negative 2x2-matrices as values, and J:=(0110)J:= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, has attracted a lot of interest over the past decades.  Special emphasis has been put on operator models and direct and inverse spectral theorems.  Weyl theory plays a prominent role in the spectral theory of the equation, relating the class of all equations (*) to the class N0 of all Nevanlinna functions via the construction of Titchmarsh–Weyl coefficients. In connection with the study of singular potentials, an indefinite (Pontryagin space) analogue of equation (*) was proposed, where the 'general Hamiltonian' is allowed to have a finite number of inner singularities. Direct and inverse spectral theorems, relating the class of all general Hamiltonians to the class <N∞ of all generalized Nevanlinna functions, were established. In the present paper, we investigate the spectral theory of general Hamiltonians having a particular form, namely, such which have only one singularity and the interval to the left of this singularity is a so-called indivisible interval.  Our results can comprehensively be formulated as follows. — We prove direct and inverse spectral theorems for this class, i.e. we establish an intrinsic characterization of the totality of all Titchmarsh–Weyl coefficients corresponding to general Hamiltonians of the considered form. —  We determine the asymptotic growth of the fundamental solution when approaching the singularity. —  We show that each solution of the equation has 'polynomially regularized' boundary values at the singularity. Besides the intrinsic interest and depth of the presented results, our motivation is drawn from forthcoming applications: the present theorems form the core for our study of Sturm–Liouville equations with two singular endpoints and our further study of the structure theory of general Hamiltonians (both to be presented elsewhere)

    Direct and inverse spectral theorems for a class of canonical systems with two singular endpoints

    Full text link
    Part I of this paper deals with two-dimensional canonical systems y(x)=yJH(x)y(x)y'(x)=yJH(x)y(x), x(a,b)x\in(a,b), whose Hamiltonian HH is non-negative and locally integrable, and where Weyl's limit point case takes place at both endpoints aa and bb. We investigate a class of such systems defined by growth restrictions on H towards a. For example, Hamiltonians on (0,)(0,\infty) of the form H(x):=(xα001)H(x):=\begin{pmatrix}x^{-\alpha}&0\\ 0&1\end{pmatrix} where α<2\alpha<2 are included in this class. We develop a direct and inverse spectral theory parallel to the theory of Weyl and de Branges for systems in the limit circle case at aa. Our approach proceeds via - and is bound to - Pontryagin space theory. It relies on spectral theory and operator models in such spaces, and on the theory of de Branges Pontryagin spaces. The main results concerning the direct problem are: (1) showing existence of regularized boundary values at aa; (2) construction of a singular Weyl coefficient and a scalar spectral measure; (3) construction of a Fourier transform and computation of its action and the action of its inverse as integral transforms. The main results for the inverse problem are: (4) characterization of the class of measures occurring above (positive Borel measures with power growth at ±\pm\infty); (5) a global uniqueness theorem (if Weyl functions or spectral measures coincide, Hamiltonians essentially coincide); (6) a local uniqueness theorem. In Part II of the paper the results of Part I are applied to Sturm--Liouville equations with singular coefficients. We investigate classes of equations without potential (in particular, equations in impedance form) and Schr\"odinger equations, where coefficients are assumed to be singular but subject to growth restrictions. We obtain corresponding direct and inverse spectral theorems

    A function space model for canonical systems

    Get PDF
    Recently, a generalization to the Pontryagin space setting of the notion of canonical (Hamiltonian) systems which involves a finite number of inner singularities has been given. The spectral theory of indefinite canonical systems was investigated with help of an operator model. This model consists of a Pontryagin space boundary triple and was constructed in an abstract way. Moreover, the construction of this operator model involves a procedure of splitting-and-pasting which is technical but at the present stage of development in general inevitable. In this paper we provide an isomorphic form of this operator model which acts in a finite-dimensional extension of a function space naturally associated with the given indefinite canonical system. We give explicit formulae for the model operator and the boundary relation. Moreover, we show that under certain asymptotic hypotheses the procedure of splitting-and-pasting can be avoided by employing a limiting process. We restrict attention to the case of one singularity. This is the core of the theory, and by making this restriction we can significantly reduce the technical effort without losing sight of the essential ideas

    Variational principles for self-adjoint operator functions arising from second-order systems

    Get PDF
    Variational principles are proved for self-adjoint operator functions arising from variational evolution equations of the form z¨(t),y+d[z˙(t),y]+a0[z(t),y]=0. \langle\ddot{z}(t),y \rangle + \mathfrak{d}[\dot{z} (t), y] + \mathfrak{a}_0 [z(t),y] = 0. Here a0\mathfrak{a}_0 and d\mathfrak{d} are densely defined, symmetric and positive sesquilinear forms on a Hilbert space HH. We associate with the variational evolution equation an equivalent Cauchy problem corresponding to a block operator matrix A\mathcal{A}, the forms t(λ)[x,y]:=λ2x,y+λd[x,y]+a0[x,y], \mathfrak{t}(\lambda)[x,y] := \lambda^2\langle x,y\rangle + \lambda\mathfrak{d}[x,y] + \mathfrak{a}_0[x,y], where λC\lambda\in \mathbb C and x,yx,y are in the domain of the form a0\mathfrak{a}_0, and a corresponding operator family T(λ)T(\lambda). Using form methods we define a generalized Rayleigh functional and characterize the eigenvalues above the essential spectrum of A\mathcal{A} by a min-max and a max-min variational principle. The obtained results are illustrated with a damped beam equation.Comment: to appear in Operators and Matrice

    Path Laplacian operators and superdiffusive processes on graphs. I. One-dimensional case

    Get PDF
    We consider a generalization of the diffusion equation on graphs. This generalized diffusion equation gives rise to both normal and superdiffusive processes on infinite one-dimensional graphs. The generalization is based on the kk-path Laplacian operators LkL_{k}, which account for the hop of a diffusive particle to non-nearest neighbours in a graph. We first prove that the kk-path Laplacian operators are self-adjoint. Then, we study the transformed kk-path Laplacian operators using Laplace, factorial and Mellin transforms. We prove that the generalized diffusion equation using the Laplace- and factorial-transformed operators always produce normal diffusive processes independently of the parameters of the transforms. More importantly, the generalized diffusion equation using the Mellin-transformed kk-path Laplacians k=1ksLk\sum_{k=1}^{\infty}k^{-s}L_{k} produces superdiffusive processes when 1<s<31<s<3

    The HELP inequality on trees

    Get PDF
    We establish analogues of Hardy and Littlewood's integro-differential equation for Schrödinger-type operators on metric and discrete trees, based on a generalised strong limit-point property of the graph Laplacian

    Spectral properties of unbounded JJ-self-adjoint block operator matrices

    Get PDF
    We study the spectrum of unbounded JJ -self-adjoint block operator matrices. In particular, we prove enclosures for the spectrum, provide a suffcient condition for the spectrum being real and derive variational principles for certain real eigenvalues even in the presence of non-real spectrum. The latter lead to lower and upper bounds and asymptotic estimates for eigenvalues

    Triple variational principles for self-adjoint operator functions

    Get PDF
    For a very general class of unbounded self-adjoint operator function we prove upper bounds for eigenvalues which lie within arbitrary gaps of the essential spectrum. These upper bounds are given by triple variations. Furthermore, we find conditions which imply that a point is in the resolvent set. For norm resolvent continuous operator functions we show that the variational inequality becomes an equality
    corecore