research

Variational principles for self-adjoint operator functions arising from second-order systems

Abstract

Variational principles are proved for self-adjoint operator functions arising from variational evolution equations of the form z¨(t),y+d[z˙(t),y]+a0[z(t),y]=0. \langle\ddot{z}(t),y \rangle + \mathfrak{d}[\dot{z} (t), y] + \mathfrak{a}_0 [z(t),y] = 0. Here a0\mathfrak{a}_0 and d\mathfrak{d} are densely defined, symmetric and positive sesquilinear forms on a Hilbert space HH. We associate with the variational evolution equation an equivalent Cauchy problem corresponding to a block operator matrix A\mathcal{A}, the forms t(λ)[x,y]:=λ2x,y+λd[x,y]+a0[x,y], \mathfrak{t}(\lambda)[x,y] := \lambda^2\langle x,y\rangle + \lambda\mathfrak{d}[x,y] + \mathfrak{a}_0[x,y], where λC\lambda\in \mathbb C and x,yx,y are in the domain of the form a0\mathfrak{a}_0, and a corresponding operator family T(λ)T(\lambda). Using form methods we define a generalized Rayleigh functional and characterize the eigenvalues above the essential spectrum of A\mathcal{A} by a min-max and a max-min variational principle. The obtained results are illustrated with a damped beam equation.Comment: to appear in Operators and Matrice

    Similar works