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PATH LAPLACIAN OPERATORS AND

SUPERDIFFUSIVE PROCESSES ON GRAPHS. I.

ONE-DIMENSIONAL CASE

ERNESTO ESTRADA, EHSAN HAMEED, NAOMICHI HATANO, MATTHIAS LANGER

Abstract. We consider a generalization of the diffusion equation on graphs.
This generalized diffusion equation gives rise to both normal and superdiffu-
sive processes on infinite one-dimensional graphs. The generalization is based
on the k-path Laplacian operators Lk, which account for the hop of a dif-
fusive particle to non-nearest neighbours in a graph. We first prove that
the k-path Laplacian operators are self-adjoint. Then, we study the trans-
formed k-path Laplacian operators using Laplace, factorial and Mellin trans-
forms. We prove that the generalized diffusion equation using the Laplace-

and factorial-transformed operators always produce normal diffusive processes
independently of the parameters of the transforms. More importantly, the

generalized diffusion equation using the Mellin-transformed k-path Laplacians∑
∞

k=1
k−sLk produces superdiffusive processes when 1 < s < 3.

2010 Mathematics Subject Classification: 47B39; 47B25, 60J60, 05C99

Keywords: k-path Laplacian, anomalous diffusion

1. Introduction

Superdiffusive processes are ubiquitous in many natural systems, ranging from phys-
ical to biological and man-made ones. They refer to those anomalous diffusive pro-
cesses where the mean square displacement (MSD) of the diffusive particle scales
nonlinearly with time. We refer the reader to [20] and the references therein for the
background and applications of anomalous diffusion. The superdiffusive processes
have been modelled in many different ways (see [20] for a review and analysis). The
most used models, however, are based on random walks with Lévy flights (RWLF)
[7] and on the use of the fractional diffusion equation (FDE) [2, Chapter 11]. There
are different types of definitions of fractional derivative, such as the Caputo frac-
tional operator and the Riemann–Liouville fractional operator [25], which then have
different interpretations and adapt differently to the different physical phenomena
studied with them (see [10, 17]).

Recently, anomalous diffusion of ultracold atoms has been observed in a discrete
one-dimensional system [27]. The model considered in that work for explaining the
superdiffusive process is a simple diffusion model in which the particles are located
in real space, each having a velocity which fluctuates in time due to interaction
with a bath. Then, after some time the particles’ position is distributed in a non-
Gaussian way and the full width at half maximum (FWHM) scales as a power-law
of the time with a signature characteristic of superdiffusion. The mathematical
framework used to describe this anomalous diffusion was based on the FDE. How-
ever, an alternative view of this process is possible. First, we can consider that
the diffusive particle is diffusing in a one-dimensional discrete space. Then, we can
consider that the diffusive particle is not only hopping to its nearest neighbours in
the 1D lattice, but to any other point of it with a probability that scales with the
distance between the two places. In the current work we prove analytically that
such kind of processes can give rise to superdiffusion under certain conditions. We
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PATH LAPLACIAN OPERATORS AND SUPERDIFFUSIVE PROCESSES 2

should remark that existence of such long-range hops in diffusive process has been
well documented since the 1990s on experimental basis of different nature. First,
the group of G. Ehrlich [28] observed experimentally significant contributions to
the thermodynamical properties of the self-diffusion of weakly bounded Pd atoms
from jumps spanning second and third nearest-neighbours in the metallic surface.
Since then, the role of long jumps in adatom and admolecules diffusing on metallic
surfaces has been confirmed in many different systems [33, 1].

The study of diffusion on graphs is a well-established physico-mathematical the-
ory based on the graph-theoretic version of the diffusion equation [15, 16]

d

dt
u(t) = −Lu(t), (1.1)

u(0) = u0, (1.2)

where L — the discrete Laplacian — is defined via the adjacency matrix A of
the graph and the diagonal matrix of vertex degrees K as L = K − A [22, 19,
21]. The Laplacian matrix has been extended to infinite, connected and locally
finite graphs and studied as an operator in the Hilbert space ℓ2 over the vertices
[3, 29, 11, 14, 12, 31, 32, 9]. Although RWLF and the FDE have been applied to
study diffusion on graphs (see for instance [30, 18]), the question that arises here
is whether is it possible to design a simple graph-theoretic, physically sound and
mathematically elegant method based on a generalization of the Laplacian operator
in (1.1) to account for the superdiffusive process observed in physical phenomena.
An appropriate scenario for this generalization is to consider that the diffusive
particle can hop not only to its nearest neighbours — as controlled by L in (1.1) —
but to any other node of the graph, with a probability that decays with the increase
of the shortest path distance separating the node in which the particle is currently
located to the one to which it will hop. A generalization of the Laplacian matrix —
known as the k-path Laplacian — that takes into account such long-range hops of
the diffusive particle has been recently considered for finite undirected graphs [8].

The aim of this article is twofold. First, we extend the k-path Laplacians Lk

[8] to consider connected and locally finite infinite graphs. We prove here that
these operators are self-adjoint. We also study the transformed k-path Laplacian
operators using Laplace, factorial and Mellin transforms. We then study an infinite
linear chain and obtain analytical expressions for the transformed k-path Laplacians
operators as well as for the exponential operators of both, the k-path Laplacians and
their transformations. Second, we plug this generalized Laplacian operators into
the graph-theoretic diffusion equation (1.1–1.2) to obtain a generalized diffusion
equation for graphs. We prove that when the Laplace- and factorial-transformed
operators are used in the generalized diffusion equation, the diffusive processes
observed are always normal independently of the parameters of the transforms. For
the Mellin-transformed k-path Laplacians

∑∞
k=1 k

−sLk we find that the diffusion
is normal only when s > 3. When 1 < s < 3, however, the time evolution is
superdiffusive with the superdiffusive exponent being κ = 2

s−1 , which leads to

arbitrary values for κ in (1,∞). We remind that in general we can find that MSD ∼
tκ, where the diffusion is normal when κ = 1, while it is a superdiffusive process
when κ > 1. The particular case when κ = 2 is known as ballistic diffusion, which
is characterized by the fact that at small times the particles are not hindered yet
by collisions and diffuse very fast. In a follow-up paper (Part II) we shall study the
two-dimensional situation.
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2. The k-path Laplacian operators

In this work we always consider Γ = (V,E) to be an undirected finite or infinite
graph with vertices V and edges E. We assume that Γ is connected and locally
finite (i.e. each vertex has only finitely many edges emanating from it). Let d be
the distance metric on Γ, i.e. d(v, w) is the length of the shortest path from v to w,
and let δk(v) be the k-path degree of the vertex v, i.e.

δk(v) := #{w ∈ V : d(v, w) = k}. (2.1)

Since Γ is locally finite, δk(v) is finite for every v ∈ V . Denote by C(V ) the
set of all complex-valued functions on V and by C0(V ) the set of complex-valued
functions on V with finite support. Moreover, let ℓ2(V ) be the Hilbert space of
square-summable functions on V with inner product

〈f, g〉 =
∑

v∈V

f(v)g(v), f, g ∈ ℓ2(V ). (2.2)

In ℓ2(V ) there is a standard orthonormal basis consisting of the vectors ev, v ∈ V ,
where

ev(w) :=

{
1 if w = v,

0 otherwise.
(2.3)

Let Lk be the following mapping from C(V ) into itself:
(
Lkf

)
(v) :=

∑

w∈V : d(v,w)=k

(
f(v)− f(w)

)
, f ∈ C(V ). (2.4)

This means that by replacing L in (1.1) by Lk in (2.4) we obtain a diffusive process
in which the diffusive particle hops to nodes which are separated by k edges from
its current location. This represents a natural extension of the idea of diffusion
on graphs where the particle can only hops to nearest neighbours from its current
position. As it has been analysed in [8], the so-called k-path Laplacian naturally
extends the concept of graph connectivity, i.e. whether a graph is connected or
not, to the k-connectivity, which indicates whether every node in the graph can be
reached by a particle which is k-hopping from node to node in the graph.

On the vectors ev it acts as follows:

(Lkev)(w) =





δk(v) if w = v,

−1 if d(v, w) = k,

0 otherwise.

(2.5)

We define Lk,min and Lk,max, the minimal and maximal k-path Laplacians, as
the restrictions of Lk to

dom(Lk,min) = C0(V ) and dom(Lk,max) =
{
f ∈ ℓ2(V ) : Lkf ∈ ℓ2(V )

}
,

respectively. Clearly, ev ∈ dom(Lk,min), and we obtain from (2.5) that

∥∥Lk,minev
∥∥ =

√(
δk(v)

)2
+ δk(v) =





0 if δk(v) = 0,

δk(v)

√
1 +

1

δk(v)
if δk(v) > 0.

(2.6)

First we show that L∗
k,min = Lk,max. To this end let f ∈ C0(V ) and g ∈ C(V ), let

V00 be the support of f and set

V0 := V00 ∪
{
v ∈ V : ∃w ∈ V00 such that d(v, w) = k

}
, (2.7)
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which is a finite set. Then suppLkf ⊂ V0 and the following relation holds:
∑

v∈V

(Lkf)(v)g(v) =
∑

v∈V0

(Lkf)(v)g(v) =
∑

v,w∈V0:

d(v,w)=k

(
f(v)− f(w)

)
g(v)

=
1

2




∑

v,w∈V0:

d(v,w)=k

(
f(v)− f(w)

)
g(v) +

∑

v,w∈V0:

d(v,w)=k

(
f(w)− f(v)

)
g(w)




=
1

2

∑

v,w∈V0:

d(v,w)=k

(
f(v)− f(w)

)(
g(v)− g(w)

)
(2.8)

=
1

2




∑

v,w∈V0:

d(v,w)=k

f(v)
(
g(v)− g(w)

)
+

∑

v,w∈V0:

d(v,w)=k

f(w)
(
g(w)− g(v)

)



=
∑

v,w∈V0:

d(v,w)=k

f(v)
(
g(v)− g(w)

)
=

∑

v∈V00

f(v)(Lkg)(v)

=
∑

v∈V

f(v)(Lkg)(v). (2.9)

Let g ∈ dom(Lk,max). It follows from (2.9) that

〈Lk,minf, g〉 = 〈f, Lk,maxg〉
for all f ∈ dom(Lk,min), which implies that g ∈ dom(L∗

k,min). Now let g ∈
dom(L∗

k,min). For each v ∈ V we obtain from (2.9) with f = ev that

(L∗
k,ming)(v) = 〈ev, L∗

k,ming〉 = 〈Lk,minev, g〉 =
∑

w∈V

(Lkev)(w)g(w)

=
∑

w∈V

ev(w)(Lkg)(w) = (Lkg)(v),

which implies that L∗
k,ming = Lkg. Since L∗

k,ming ∈ ℓ2(V ) by the definition of the

adjoint, it follows that g ∈ dom(Lk,max). Hence L∗
k,min = Lk,max.

Since Lk,max is an extension of Lk,min, it follows that Lk,min is a symmetric
operator. Moreover, for f = g we obtain from (2.8) that

〈
Lk,minf, f

〉
=

1

2

∑

v,w∈V0:

d(v,w)=k

∣∣f(v)− f(w)
∣∣2, (2.10)

where V0 is as in (2.7); this shows that Lk,min is a non-negative operator.
We say that a subset V0 of V is k-connected if each pair v, w ∈ V0 is connected by

a k-hopping walk. The set V0 ⊂ V is called a k-connected component of V if V0 is
a maximal k-hopping connected subset of V . If V0 ⊂ V is a k-hopping component,
then C(V0) considered as a subspace of C(V ) is Lk-invariant.

Lemma 2.1. Let V0 be a k-connected component of V and let f ∈ C(V0) be real-
valued and bounded such that f attains its supremum. If

(
Lkf

)
(v) ≤ 0 for every v ∈ V0, (2.11)

then f is constant on V0.
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Proof. Assume that f is not constant. Then there exist v0, v1 ∈ V0 such that

f(v0) = max{f(v) : v ∈ V0},

f(v1) < f(v0), d(v1, v0) = k.

This implies that

(
Lkf

)
(v0) = f(v0)− f(v1) +

∑

w 6=v1:

d(w,v0)=k

(
f(v0)− f(w)

)
> 0,

which is a contradiction to (2.11). Hence f is constant on V0. �

Next we show that Lk,min is actually essentially self-adjoint; see, e.g. [11, 31, 32]
for the case k = 1.

Theorem 2.2. The operator Lk,min is essentially self-adjoint and hence Lk,max is
equal to the closure of Lk,min.

Proof. Since Lk,min is non-negative and L∗
k,min = Lk,max, it is sufficient to show

that −1 is not an eigenvalue of Lk,max. Assume that this is not the case. Then
there exists an f ∈ ℓ2(V ) such that f 6≡ 0 and Lk,maxf = −f . The function f
must be zero on every finite k-hopping component since Lk,max restricted to such
a component is self-adjoint and non-negative. Therefore there exists an infinite
k-hopping component V0 where f is not identically zero. It follows that

δk(v)f(v)−
∑

w: d(v,w)=k

f(w) = −f(v)

for v ∈ V0, or equivalently,

(
δk(v) + 1

)
f(v) =

∑

w: d(v,w)=k

f(w).

Taking the modulus on both sides we obtain

(
δk(v) + 1

)
|f(v)| ≤

∑

w: d(v,w)=k

|f(w)|.

Now we consider the function |f |:
(
Lk|f |

)
(v) = δk(v)|f(v)| −

∑

w: d(v,w)=k

|f(w)| ≤ −|f(v)| ≤ 0.

Since f |V0
∈ ℓ2(V0), the function |f | attains the supremum on V0. Hence Lemma 2.1

yields that |f | is constant on V0. This implies that f = 0 on V0 because V0 is infinite;
a contradiction. �

We denote the closure of Lk,min by Lk and call it the k-path Laplacian. By
the previous theorem we have Lk = Lk,max; it is a self-adjoint and non-negative
operator in ℓ2(V ). Note the difference in notation between the mapping Lk acting
in C(V ) and the self-adjoint operator Lk in ℓ2(V ).
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We can now estimate forms: for f ∈ dom(Lk,min) = C0(V ) we obtain from (2.10)
that

〈
Lk,minf, f

〉
=

1

2

∑

v,w∈V :

d(v,w)=k

∣∣f(v)− f(w)
∣∣2 ≤ 1

2

∑

v,w∈V :

d(v,w)=k

(
|f(v)|+ |f(w)|

)2

≤
∑

v,w∈V :

d(v,w)=k

(
|f(v)|2 + |f(w)|2

)

=
∑

v∈V

δk(v)|f(v)|2 +
∑

w∈V

δk(w)|f(w)|2

= 2
∑

v∈V

δk(v)|f(v)|2. (2.12)

In the next theorem we answer the question when Lk is a bounded operator.

Theorem 2.3. The operator Lk is bounded if and only if δk is a bounded function
on V . Now assume that δk is bounded and set

δk,max := max{δk(v) : v ∈ V }; (2.13)

then
δk,max ≤ ‖Lk‖ ≤ 2δk,max. (2.14)

Proof. If δk is unbounded, then (2.6) immediately shows that Lk is unbounded.
Now assume that δk is bounded. Relation (2.6) yields the lower bound for ‖Lk‖ in
(2.14). From (2.12) we obtain that for f ∈ dom(Lk,min),

〈
Lk,minf, f

〉
≤ 2δk,max

∑

v∈V

|f(v)|2 = 2δk,max‖f‖2.

Since Lk is self-adjoint and Lk is the closure of Lk,min, this shows that Lk is bounded
and that ‖Lk‖ ≤ 2δk,max. �

3. Transformed k-path Laplacian operators

We consider series of the form
∞∑

k=1

ckLk (3.1)

with ck ∈ C. If all Lk are bounded and
∞∑

k=1

|ck| ‖Lk‖ < ∞, (3.2)

then the series in (3.1) converges to a bounded operator on ℓ2(V ). If, in addition,
ck ∈ R for all k ∈ N, then the operator in (3.1) is self-adjoint; if ck ≥ 0 for all
k ∈ N, then it is a non-negative operator.

In the following we discuss three transformed operators in more detail: the
Laplace, the factorial and the Mellin transforms.

Theorem 3.1. Assume that δ1 is bounded on V and let δ1,max be as in (2.13).

(i) The Laplace-transformed k-Laplacian

L̃L,λ :=

∞∑

k=1

e−λkLk (3.3)

is a bounded operator when λ ∈ C with Reλ > ln δ1,max. It is non-negative if
λ ∈ (ln δ1,max,∞).
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(ii) The factorial-transformed k-Laplacian

L̃F,z :=

∞∑

k=1

zk

k!
Lk (3.4)

is a bounded operator for every z ∈ C. It is self-adjoint if z ∈ R and non-
negative if z ≥ 0.

(iii) Assume that δk,max satisfies

δk,max ≤ Ckα (3.5)

for some α ≥ 0 and C > 0; then the Mellin-transformed k-Laplacian

L̃M,s :=

∞∑

k=1

1

ks
Lk (3.6)

is a bounded operator for s ∈ C with Re s > α+ 1.

Under the assumption (3.5) the operator L̃L,λ from (3.3) is bounded for
every λ ∈ C with Reλ > 0.

Proof. It follows easily that δk,max ≤ δk1,max and hence

‖Lk‖ ≤ 2δk1,max

for every k ∈ N by Theorem 2.3. Therefore the convergence condition (3.2) is
satisfied in items (i) and (ii) for the specified λ and z.

For item (iii) we observe that under the condition (3.5) the operators Lk satisfy

‖Lk‖ ≤ 2Ckα.

Hence also in this case the condition (3.2) is satisfied for L̃M,s with Re s > α + 1

and for L̃L,λ with Reλ > 0. �

If the graph is finite, then there is no restriction on the parameters needed, i.e.
one can choose any λ ∈ C in (i) and any s ∈ C in (iii).

The growth condition (3.5) is fulfilled for several infinite graphs such as a linear
path graph (or chain) for which δk,max = 2 for every k ∈ N, an infinite ladder
for which δk,max = 4, and for triangular, square and hexagonal lattices for which
δk,max = gk, with g = 6, 4, 3, respectively, among many others. However, it is not

fulfilled for Cayley trees for which δk,max = r (r − 1)
k−1

where r is the degree of
the non-pendant nodes.

Let us now consider the situation when the operators Lk may be unbounded.
The closed quadratic form lk corresponding to Lk in the sense of [13, §VI.1.5] is
given by

lk[f ] :=
1

2

∑

v,w∈V :

d(v,w)=k

∣∣f(v)− f(w)
∣∣2

with domain

dom(lk) =

{
f ∈ ℓ2(V ) :

∑

v,w∈V :

d(v,w)=k

∣∣f(v)− f(w)
∣∣2 < ∞

}
.

Assume that ck ≥ 0, k ∈ N. Then

N∑

k=1

cklk (3.7)
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is an increasing sequence of densely defined, closed, non-negative quadratic forms
(see [13, Theorem VI.1.31]). By [13, Theorem VIII.3.13a] the sequence in (3.7)

converges to a closed non-negative quadratic form l̃ that is given by

l̃[f ] =

∞∑

k=1

cklk[f ] =
1

2

∞∑

k=1

ck
∑

v,w∈V :

d(v,w)=k

∣∣f(v)− f(w)
∣∣2,

dom(̃l) =
{
f ∈

∞⋂

k=1

dom(lk) :

∞∑

k=1

cklk[f ] < ∞
}
.

Assume now that
∞∑

k=1

ckδk(v) < ∞ (3.8)

for every v ∈ V . Since

lk[ev] = 〈Lkev, ev〉 = δk(v)

by (2.5), condition (3.8) implies that ev ∈ dom(̃l) for every v ∈ V , and hence

the form l̃ is densely defined. By [13, Theorem VI.2.1] there exists a self-adjoint

non-negative operator L̃ that corresponds to l̃ in the sense that

l̃[f, g] =
〈
L̃f, g

〉
for f ∈ dom

(
L̃
)
, g ∈ dom

(̃
l
)
.

Moreover, [13, Theorem VIII.3.13a] implies that the partial sums
∑N

k=1 ckLk con-

verge in the strong resolvent sense to the operator L̃.
As an example consider a tree where each vertex in generation n ∈ N0 has n+1

children. It is easy to see that there are n! vertices in generation n and that

δk(v) ≤ (n+ k)!

for each vertex v in generation n. For z ∈ (0, 1) condition (3.8) is satisfied for the
factorial transform since

∞∑

k=1

zk

k!
δk(v) ≤

∞∑

k=1

zk

k!
(n+ k)! < ∞

for every vertex v in generation n. Hence L̃F,z is a self-adjoint operator on this
tree. If one includes linear chains of growing length between each generation, then
δk(v) is growing more slowly and also other transformed k-path Laplacians are
self-adjoint operators.

Assume that we are in the situation as above, i.e. that ck ≥ 0 and that condition
(3.8) is satisfied. It is not difficult to see that the quadratic form l̃ is a Dirichlet

form, i.e. it is closed and non-negative and it satisfies l̃[Cf ] ≤ l̃[f ] for every mapping
C : C → C with C(0) = 0 and |Cx−Cy| ≤ |x−y|. By the Beurling–Deny criteria the

operator −L̃ generates an analytic, positivity-preserving semigroup of contractions;
see, e.g. [26, Appendix 1 to Section XIII.12]. In the remaining sections we consider
a situation where all Lk are bounded operators and (3.2) is satisfied. In this case

we can write (e−tL̃)t≥0 for the semigroup.

4. The k-path Laplacians on the infinite path graph

Let P∞ be the infinite path graph (or chain), i.e. the graph whose vertices can be
identified with Z and each pair of consecutive numbers is connected by a single
edge. We now use index notation and write u = (un)n∈Z for elements in ℓ2(P∞).
The k-path Laplacian acts as follows

(Lku)n = 2un − un+k − un−k, n ∈ Z, u = (uµ)µ∈Z ∈ ℓ2(P∞).
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It can also be identified with a double-infinite matrix whose entries are

(Lk)µν = 2δµ,ν − δµ,ν−k − δµ,ν+k, µ, ν ∈ Z, (4.1)

where δ denotes the Kronecker delta.
In order to consider the diffusion of particles on the graph, we let e0 be as in

(2.3), i.e.

(e0)n = δn,0, (4.2)

which describes a profile that is concentrated at the origin. Under the application
of the standard combinatorial Laplacian L1 the particle hops to the neighbouring
sites ±1, whereas under the application of the k-path Laplacian Lk the particle
hops to the sites ±k:

(Lke0)n = 2δn,0 − δn,−k − δn,+k.

Since δk,max = 2 for every k ∈ N, the transformed k-Laplacians L̃L,λ, L̃F,z and

L̃M,s from (3.3), (3.4) and (3.6), respectively, are bounded operators for λ ∈ C with
Reλ > 0, for every z ∈ C and every s ∈ C with Re s > 1. These operators are
self-adjoint and non-negative if λ ∈ (0,∞), z ∈ (0,∞) and s ∈ (1,∞), respectively.
In the following lemma we find explicit representations of these operators.

Lemma 4.1. Let λ ∈ C with Reλ > 0, z ∈ C and s ∈ C with Re s > 1, and

let L̃L,λ, L̃F,z, L̃M,s be as in (3.3), (3.4) and (3.6), respectively. Then for any
u ∈ ℓ2(P∞) we have

(
L̃L,λu

)
n
=

2

eλ − 1
un −

∞∑

k=1

e−λk
(
un−k + un+k

)
,

(
L̃F,zu

)
n
= 2(ez − 1)un −

∞∑

k=1

zk

k!

(
un−k + un+k

)
,

(
L̃M,su

)
n
= 2ζ(s)un −

∞∑

k=1

1

ks
(
un−k + un+k

)
,

where ζ is Riemann’s zeta function defined by

ζ(s) =

∞∑

k=1

1

ks
.

Applying them to e0 we obtain

(
L̃L,λe0

)
n
=





2

eλ − 1
if n = 0,

e−λ|n| if n 6= 0,

(
L̃F,ze0

)
n
=





2(ez − 1) if n = 0,

z|n|

|n|! if n 6= 0,
(4.3)

(
L̃M,se0

)
n
=





2ζ(s) if n = 0,

1

|n|s if n 6= 0.
(4.4)

Proof. Let ck, k ∈ N, be arbitrary coefficients so that (3.2) is satisfied. Then
( ∞∑

k=1

ckLku

)

n

=

(
2

∞∑

k=1

ck

)
un −

∞∑

k=1

ck(un−k + un+k).

Now the assertions of the lemma follow easily. �
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Figure 4.1. Plot of the particle density at the different nodes of a
linear path with 21 nodes obtained from the Laplace (circles), fac-
torial (squares) and Mellin (stars) transformed k-path Laplacians
with λ = 1, z = 1 and s = 2.5, respectively.

Figure 4.1 illustrates the results of Lemma 4.1 in a graphical form displaying

L̃L,1e0, L̃F,1e0 and L̃M,2.5e0 on 21 nodes. The plot clearly indicates that the three
transforms of the k-path Laplacian operators hop the particles to distant sites in
the linear chain.

5. Time-evolution operators

Let us now consider the time evolution of the particle density profile governed by
the differential equation

d

dt
u(t) = −Lu(t)

satisfying the initial equation u(0) = w, where L is any of the operators Lk, L̃L,λ,

L̃F,z or L̃M,s, where λ ∈ C with Reλ > 0, z ∈ C, s ∈ C with Re s > 1 and where
w ∈ ℓ2(P∞). Since L is a bounded operator in all cases, the solution is given by

u(t) = e−tLw, t ≥ 0. (5.1)

To find this exponential operator e−tL, we interpret sequences in ℓ2(P∞) as
Fourier coefficients and transform the problem into a problem in L2(−π, π). Define
the unitary operator F : ℓ2(P∞) → L2(−π, π) by

(Fu)(q) =
1√
2π

∑

n∈Z

une
inq, u = (un)n∈Z ∈ ℓ2(P∞);

its inverse is given by

(F−1g)n =
1√
2π

ˆ π

−π

e−inqg(q) dq, g ∈ L2(−π, π).
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Let us first determine the operator in L2(−π, π) that is equivalent to Lk via F . For
u ∈ ℓ2(P∞) we have

(
FLku

)
(q) =

1√
2π

∑

n∈Z

(
2un − un−k − un+k

)
einq

=
1√
2π

∑

n∈Z

(
2une

inq − une
i(n+k)q − une

i(n−k)q
)

=
1√
2π

∑

n∈Z

(
2− eikq − e−ikq

)
une

inq =
(
2− eikq − e−ikq

)
(Fu)(q).

Hence the operator Lk is unitarily equivalent to the multiplication operator in
L2(−π, π) by the function

ℓk(q) := 2− eikq − e−ikq = 2
(
1− cos(kq)

)
, (5.2)

i.e.
(
FLkF−1g

)
(q) = ℓk(q)g(q), g ∈ L2(−π, π). (5.3)

The transformed operators L̃L,λ, L̃F,z and L̃M,s are also unitarily equivalent to
multiplication operators:

(
FL̃TF−1g

)
(q) = ℓ̃T (q)g(q) (5.4)

for T = L, λ, T = F, z or T = M, s where

ℓ̃L,λ(q) :=

∞∑

k=1

e−λkℓk(q), ℓ̃F,z(q) :=

∞∑

k=1

zk

k!
ℓk(q),

ℓ̃M,s(q) :=

∞∑

k=1

1

ks
ℓk(q).

(5.5)

Closed forms for these sums are given in the next lemma.

Lemma 5.1. Let λ ∈ C with Reλ > 0, z ∈ C, s ∈ C with Re s > 1. With the
notation from above we have

ℓ̃L,λ(q) =
(eλ + 1)(1− cos q)

(eλ − 1)(coshλ− cos q)
, (5.6)

ℓ̃F,z(q) = 2
[
ez − ez cos q cos(z sin q)

]
, (5.7)

ℓ̃M,s(q) = 2ζ(s)− Lis(e
iq)− Lis(e

−iq), (5.8)

where Lis is the polylogarithm — also known as Jonquière’s function — defined for
s ∈ C with Re s > 1 by

Lis(z) :=

∞∑

k=1

zk

ks
when |z| ≤ 1

and by analytic continuation to C \ (1,∞).

Moreover, the functions ℓ̃L,λ, ℓ̃F,z and ℓ̃M,s are continuous on [−π, π] and satisfy

ℓ(q) > 0 for q ∈ [−π, π] \ {0} (5.9)

for ℓ = ℓ̃L,λ, ℓ̃F,z, ℓ̃M,s when λ > 0, z > 0, s > 1, respectively.
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Proof. Representation (5.6) follows from

ℓ̃L,λ(q) = 2
∞∑

k=1

e−λk −
∞∑

k=1

e−λkeikq −
∞∑

k=1

e−λke−ikq

=
2

eλ − 1
− 1

eλ−iq − 1
− 1

eλ+iq − 1
=

2

eλ − 1
− 2

eλ cos q − 1
∣∣eλ−iq − 1

∣∣2

=
2

eλ − 1
− 2

eλ cos q − 1

e2λ + 1− 2eλ cos q
=

2

eλ − 1
− cos q − e−λ

coshλ− cos q

=
(eλ + 1)(1− cos q)

(eλ − 1)(coshλ− cos q)
.

The representations (5.7) and (5.8) are proved easily. The continuity of the func-
tions follows from the representations (5.6)–(5.8) or from the uniform convergence
of the series.

To show (5.9), observe that ℓk(q) = 2(1 − cos(kq)) ≥ 0 for all q ∈ [−π, π].
Moreover, ℓ1(q) > 0 for q ∈ [−π, π] \ {0}. Since all coefficients in the series in (5.5)
are positive when λ > 0, z > 0, s > 0, respectively, the claim follows. �

The following theorem gives an explicit description of the time evolution operator
corresponding to the transformed k-path Laplacians; cf., e.g. [4, Proposition 2] for
a similar representation for the case L = L1.

Theorem 5.2. Let λ ∈ C with Reλ > 0, z ∈ C and s ∈ C with Re s > 1, let

L = Lk, L̃L,λ, L̃F,z or L̃M,s and let ℓ = ℓk, ℓ̃L,λ, ℓ̃F,z or ℓ̃M,s, correspondingly. For
w = (wν)ν∈Z ∈ ℓ2(P∞) the solution of (5.1) is given by

(
u(t)

)
n
=

(
e−tLw

)
n
=

∑

ν∈Z

wν

1

2π

ˆ π

−π

ei(n−ν)qe−tℓ(q) dq, t ≥ 0, n ∈ Z. (5.10)

The entries of the double-infinite Toeplitz matrix corresponding to the time evolution
operator e−tL are

(
e−tL

)
µν

=
1

2π

ˆ π

−π

ei(µ−ν)qe−tℓ(q) dq =
1

2π

ˆ π

−π

cos
(
(µ− ν)q

)
e−tℓ(q) dq. (5.11)

Proof. Since FLF−1 acts as a multiplication operator by ℓ (see (5.3) and (5.4)),
we have (

Fe−tLF−1g
)
(q) = e−tℓ(q)g(q), g ∈ L2(−π, π).

Let ν ∈ Z and eν as in (2.3). Then

(
e−tLeν

)
n
=

(
F−1e−tℓ(·)Feν

)
n
=

1√
2π

ˆ π

−π

e−inqe−tℓ(q) 1√
2π

eiνq dq

=
1

2π

ˆ π

−π

e−i(n−ν)qe−tℓ(q) dq =
1

2π

ˆ π

−π

ei(n−ν)qe−tℓ(q) dq

where the last equality follows since ℓ is an even function. Since e−tL is a bounded
operator we have

e−tLw =
∑

ν∈Z

wνe
−tLeν ,

which proves (5.10) and hence also (5.11). �

In Figure 5.1 we illustrate the time evolution of the density u(t) for the three
transforms of the k-path Laplace operators.
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Figure 5.1. The particle density (u(t))x as a function of x for the
transformed k-path Laplacians for a linear chain with 21 nodes.
The symbols indicate the results obtained from the simulations of
the linear chain and the solid lines represent the values obtained
analytically from Theorem 5.2 for different time: t = 0.5 (circles),
t = 1.0 (squares), t = 1.5 (dots), t = 2.0 (rhombus), t = 2.5
(triangles), t = 3.0 (stars). (a) Laplace transform with λ = 1. (b)
Factorial-transform with z = 1. (c) Mellin-transform with s = 4.

6. Generalized diffusion on the path graph

In this section we prove that the density profile u(t) that solves

d

dt
u(t) = −Lu(t), (6.1)

u(0) = e0, (6.2)

where e0 is as in (4.2) and L is any of the transformed k-path Laplacians L̃L,λ, L̃F,z

or L̃M,s, approaches a stable distribution if appropriately scaled. Stable distribu-
tions can be parameterized with four parameters as follows (see, e.g. [23, §1.3]). Let
α ∈ (0, 2], β ∈ [−1, 1], γ > 0 and δ ∈ R; then the density of the stable distribution
S(α, β, γ, δ) is given by

f(ξ;α, β, γ, δ) =
1

2π

ˆ ∞

−∞

φ(z;α, β, γ, δ)eiξz dz,
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where

φ(z;α, β, γ, δ) = exp
[
−|γz|α

(
1 + iβ sign(z)ω(z, α)

)
+ iδz

]
, z ∈ R,

with

ω(z, α) =





− tan
πα

2
if α 6= 1,

2

π
ln |z| if α = 1.

Note that φ( · ;α, β, γ, δ) is the characteristic function of the probability distribution
S(α, β, γ, δ). We are only interested in the case when β = δ = 0, which yields the
following simpler function:

φ(z;α, 0, γ, 0) = exp
(
−|γz|α

)
. (6.3)

There are two special cases where the density f can be computed explicitly: when
α = 2, we obtain a normal distribution with variance 2γ2, i.e.

f(ξ; 2, 0, γ, 0) =
1

2
√
π γ

exp
(
− ξ2

4γ2

)
;

when α = 1, we obtain a Cauchy distribution:

f(ξ; 1, 0, γ, 0) =
1

π
· γ

γ2 + ξ2
.

When α < 2 the density has a power-like decay:

f(ξ;α, 0, γ, 0) ∼ 1

π
Γ(α+ 1) sin

(πα
2

)
γα · 1

ξα+1
as ξ → ±∞; (6.4)

see, e.g. [23, Theorem 1.12]. Here and in the following we use the following notation:
let g1 and g2 be functions that are defined and positive-valued on an interval of the
form (a,∞); we write

g1(x) ∼ g2(x) as x → ∞ if lim
x→∞

g1(x)

g2(x)
= 1;

a similar notation is used for the behaviour as x → 0. Relation (6.4) implies that
S(α, 0, γ, 0) has no finite variance if α < 2. Further, if α ≤ 1, then even the first
moment is infinite.

In the following we study the asymptotic behaviour of the density profile u(t)
that solves (6.1) and (6.2). It follows from (5.10) that

(
u(t)

)
x
=

(
e−tLe0

)
x
=

1

2π

ˆ π

−π

eixqe−tℓ(q) dq, x ∈ Z, t ≥ 0. (6.5)

In the next lemma we consider the asymptotic behaviour of integrals as in (6.5).
We allow also values α > 2 in the notation f(z;α, 0, γ, 0) although this is not needed
later.

Lemma 6.1. Let α > 0 and let h : [−π, π] → R be a continuous function that
satisfies

h(q) > 0 for q ∈ [−π, π] \ {0}, (6.6)

h(q) ∼ c|q|α as q → 0 (6.7)

with some c > 0. Then

t
1

α

1

2π

ˆ π

−π

eit
1

α ξqe−th(q) dq → 1

2π

ˆ ∞

−∞

eiξze−c|z|α dz (6.8)

= f
(
ξ;α, 0, c

1

α , 0
)

(6.9)

uniformly in ξ on R as t → ∞.
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Hence

1

2π

ˆ π

−π

eixqe−th(q) dq = t−
1

α f
(
t−

1

αx;α, 0, c
1

α , 0
)
+ o

(
t−

1

α

)
(6.10)

uniformly in x ∈ R as t → ∞.

Proof. Let t > 0. With the substitution z = t
1

α q we have
∣∣∣∣∣ t

1

α

1

2π

ˆ π

−π

eit
1

α ξqe−th(q) dq − 1

2π

ˆ ∞

−∞

eiξze−c|z|α dz

∣∣∣∣∣

=

∣∣∣∣∣
1

2π

ˆ πt
1

α

−πt
1

α

eiξze−th(t−
1

α z) dz − 1

2π

ˆ ∞

−∞

eiξze−c|z|α dz

∣∣∣∣∣

≤
∣∣∣∣∣
1

2π

ˆ πt
1

α

−πt
1

α

eiξz
(
e−th(t−

1

α z) − e−c|z|α
)
dz

∣∣∣∣∣

+

∣∣∣∣∣
1

2π

ˆ

R\[−πt
1

α ,πt
1

α ]

eiξze−c|z|α dz

∣∣∣∣∣

≤ 1

2π

ˆ πt
1

α

−πt
1

α

∣∣∣e−th(t−
1

α z) − e−c|z|α
∣∣∣ dz (6.11)

+
1

2π

ˆ

R\[−πt
1

α ,πt
1

α ]

e−c|z|α dz. (6.12)

First note that the integrals in (6.11) and (6.12) are independent of ξ. We show
that both integrals converge to 0 as t → ∞. For the integral in (6.12) this is clear.
Let us now consider the integral in (6.11). Since h is continuous and satisfies (6.6)
and (6.7), the function q 7→ h(q)/|q|α is bounded below by a positive constant, i.e.
there exists c̃ > 0 such that

h(q) ≥ c̃|q|α for q ∈ [−π, π].

This implies that the integrand in (6.11) satisfies
∣∣∣e−th(t−

1

α z) − e−c|z|α
∣∣∣ ≤ e−th(−t

−

1

α z) + e−c|z|α

≤ e−tc̃|t−
1

α z|α + e−c|z|α = e−c̃|z|α + e−c|z|α

for z ∈ [−πt
1

α , πt
1

α ]. Therefore the integrand in (6.11) is bounded by the integrable
function z 7→ e−c̃|z|α + e−c|z|α , which is independent of t. For fixed z ∈ R we have

th
(
t−

1

α z
)
= |z|αh(t

− 1

α z)

|t− 1

α z|α
→ c|z|α as t → ∞

by (6.7) and hence
∣∣∣e−th(t−

1

α z) − e−c|z|α
∣∣∣ → 0 as t → ∞.

Now the Dominated Convergence Theorem implies that the integral in (6.11) con-
verges to 0 as t → ∞. This shows (6.8).
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Finally, we prove (6.10). With the substitution x = t
1

α ξ we obtain from (6.8)
and (6.9) that

1

t−
1

α

∣∣∣∣∣
1

2π

ˆ π

−π

eixqe−th(q) dq − t−
1

α f
(
t−

1

αx;α, 0, c
1

α , 0
)
∣∣∣∣∣

=

∣∣∣∣∣t
1

α

1

2π

ˆ π

−π

eixqe−th(q) dq − f
(
t−

1

αx;α, 0, c
1

α , 0
)
∣∣∣∣∣ → 0

uniformly in x ∈ R as t → ∞, which shows (6.10). �

Remark 6.2. The lemma can be interpreted as follows. If the function

g(x, t) :=
1

2π

ˆ π

−π

eixqe−th(q) dq

is scaled in the independent and the dependent variable, then it converges:

t
1

α g
(
t

1

α ξ, t
)
→ f

(
ξ;α, 0, c

1

α , 0
)

as t → ∞.

This means that the profile spreads proportionally to t
1

α . The solution (u(t))x is
defined only for x ∈ Z. Scaling this discrete profile in the same way leads to a
sequence of points: (

t−
1

αx, t
1

α

(
u(t)

)
x

)
, x ∈ Z,

for each t ≥ 0; the points lie on the graph of the function ξ 7→ t
1

α g(t
1

α ξ, t). These
sequences of points become denser as t growths and converge to the limiting profile
f(ξ;α, 0, c

1

α , 0) as t → ∞. In particular, the maximum height, which is attained at
0, decreases like

(
u(t)

)
0
∼ t−

1

α f
(
0;α, 0, c

1

α , 0
)
=

Γ
(
α+1
α

)

πc
1

α

t−
1

α , as t → ∞. (6.13)

The full width at half maximum (FWHM) increases like

FWHM(t) ∼ 2ξ0t
1

α as t → ∞, (6.14)

where ξ0 > 0 is such that f(ξ0;α, 0, c
1

α , 0) = 1
2f(0;α, 0, c

1

α , 0). This implies that
if α = 2, then one has normal diffusion, and if α < 2, then the time evolution is
superdiffusive since (FWHM(t))2 ∼ ctκ with κ = 2

α
. We used the square of the full

width at half maximum FWHM2 instead of the mean square displacement MSD
because the latter is infinite if α < 2. ♦

6.1. Diffusion for the Laplace- and factorial-transformed k-path Lapla-

cians. In the next theorem we show that the time evolution with the k-path
Laplacians and the Laplace-transformed and factorial-transformed k-path Lapla-
cians show normal diffusion (see, e.g. [6] for the case L = L1). This is caused by

the fact that ℓk, ℓ̃L,λ and ℓ̃F,z behave quadratically around 0.

Theorem 6.3. Let P∞ be the infinite path graph, let λ, z > 0 and let L̃L,λ and

L̃F,z be the Laplace-transformed and factorial-transformed k-path Laplacian with
parameters λ and z, respectively. Moreover, let u(t) be the solution of (6.1), (6.2)

with L = Lk, L = L̃L,λ or L = L̃F,z. Then

(
u(t)

)
x
= t−

1

2

1

2
√
πa

exp

(
− x2

4at

)
+ o

(
t−

1

2

)
as t → ∞ (6.15)
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Figure 6.1. The graphs of the functions ℓ̃L,λ with λ = 1 (blue

solid curve) and ℓ̃F,z with z = 1/2 (orange broken curve) on the
interval [−π, π].

uniformly in x ∈ Z where

a = k2 for L = Lk, (6.16)

a =
eλ

(
eλ + 1

)

(eλ − 1)3
=

coth
(
λ
2

)

2(coshλ− 1)
for L = L̃L,λ, (6.17)

a = z(z + 1)ez for L = L̃F,z. (6.18)

Proof. The asymptotic behaviour of the functions ℓk, ℓ̃L,λ and ℓ̃F,z from (5.2), (5.6)
and (5.7) is ℓk(q) ∼ k2q2 as q → 0,

ℓ̃L,λ(q) =
eλ + 1

(eλ − 1)(coshλ− 1)
· q

2

2
+ O

(
q4
)
= aq2 +O

(
q4
)

as q → 0

with a from (6.17) and

ℓ̃F,z(q) = 2

[
ez − ez

(
1− zq2

2
+ O

(
q4
))(

1− z2q2

2
+ O

(
q4
))]

= ez(z + z2)q2 +O
(
q4
)

as q → 0

with a from (6.18), respectively. Now (6.15) follows from (6.5) and Lemma 6.1. �

Remark 6.4. Theorem 6.3 shows that the diffusion for the k-path Laplacian, the
Laplace-transformed and the factorial-transformed k-path Laplacian is always nor-
mal. The peak height of the distribution is attained at x = 0 and behaves like

(
u(t)

)
0
∼ 1

2
√
πa

t−
1

2 as t → ∞,

where a is from (6.16)–(6.18); see (6.13). The mean square displacement behaves
like

MSD(t) ∼ 2at as t → ∞
and the full width at half maximum (FWHM) behaves like

FWHM(t) ∼ 2
√
(ln 2)a t

1

2 as t → ∞;

see (6.14). For the limiting behaviour after rescaling in x see Remark 6.2. ♦
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Figure 6.2. The parameter dependence of a for (a) the Laplace-
transformed and (b) the factorial-transformed k-path Laplacian.

6.2. Diffusion for the Mellin-transformed k-path Laplacian. For the Mellin-
transformed k-path Laplacian, the density profile shows superdiffusion for 1 < s < 3
and normal diffusion for s > 3.

Theorem 6.5. Let P∞ be the infinite path graph, let s > 1 and let L̃M,s be the
Mellin-transformed k-path Laplacian with parameter s. Moreover, let u(t) be the

solution of (6.1) and (6.2) with L = L̃M,s. Then
(
u(t)

)
x
= t−

1

α f
(
t−

1

αx;α, 0, γ, 0
)
+ o

(
t−

1

α

)
as t → ∞ (6.19)

uniformly in x ∈ Z where

α = s− 1, γ =

(
− π

Γ(s) cos
(
πs
2

)
) 1

s−1

if 1 < s < 3, (6.20)

α = 2, γ =
√
ζ(s− 2) if s > 3. (6.21)

In the case 1 < s < 3, the (rescaled) limit distribution has the following asymptotic
behaviour:

f(ξ;α, 0, γ, 0) ∼ 1

ξs
as ξ → ±∞, (6.22)

where α and γ are as in (6.20).

Note that in the case when s > 3 the limiting distribution is a normal distribution
and hence

(
u(t)

)
x
= t−

1

2

1

2
√
πζ(s− 2)

exp

(
− x2

4ζ(s− 2)t

)
+ o

(
t−

1

2

)
as t → ∞;

when s = 2, the limiting distribution is a Cauchy distribution and hence

(
u(t)

)
x
=

t

x2 + π2t2
+ o

(
t−1

)
as t → ∞.

Proof. We consider the behaviour of ℓ̃M,s from (5.8) at 0. Let s > 1 with s /∈ N. It
follows from [24, 25.12.12] that

Lis(e
z) = Γ(1− s)(−z)s−1 +

∞∑

n=0

ζ(s− n)
zn

n!
, |z| < 2π, z /∈ (0,∞),

which yields

ℓ̃M,s(q) = 2ζ(s)− Lis(e
iq)− Lis(e

−iq)

= 2ζ(s)− Γ(1− s)
(
(−iq)s−1 + (iq)s−1

)
−

∞∑

n=0

ζ(s− n)
(iq)n + (−iq)n

n!
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Figure 6.3. The graphs of the functions ℓ̃M,s on the interval
[−π, π]. The parameter s is varied from top to the bottom as
1.5, 2, 2.5 (not labelled) and 4.

= −Γ(1− s)|q|s−1
(
e−i(s−1)π

2 + ei(s−1)π

2

)
−

∞∑

n=1

ζ(s− n)
(iq)n + (−iq)n

n!

= − π

Γ(s) sin(πs)
|q|s−12 cos

(
(s− 1)π

2

)
−

∞∑

l=1

ζ(s− 2l)
2(−1)lq2l

(2l)!

= − π

Γ(s) cos
(
sπ
2

) |q|s−1 −
∞∑

l=1

ζ(s− 2l)
2(−1)lq2l

(2l)!
(6.23)

= − π

Γ(s) cos
(
sπ
2

) |q|s−1 + ζ(s− 2)q2 +O(q4) (6.24)

as q → 0. By continuity (6.23) and hence (6.24) are also valid for s = 2. If
s < 3, then the first term in (6.24) is dominating; if s > 3, then the second term is
dominating. Hence

ℓ̃M,s(q) ∼





− π

Γ(s) cos
(
sπ
2

) |q|s−1 if 1 < s < 3,

ζ(s− 2)q2 if s > 3

as q → 0. Now (6.19) follows from (6.5) and Lemma 6.1.
To show (6.22), we use (6.4), which yields

f(ξ; s− 1, 0, γ, 0) ∼ 1

π
Γ(s) sin

(
π(s− 1)

2

) −π

Γ(s) cos
(
πs
2

) · 1

ξs
=

1

ξs

as ξ → ±∞. �

When s = 3, the asymptotic expansion of ℓ̃M,s(q) involves a logarithmic term,
which implies that the asymptotic behaviour of (u(t))x is more complicated.

Remark 6.6. In Fig. 6.4 we plot the density profiles for various times when the
time evolution is governed by (6.1) with L being the Mellin-transformed k-path
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Laplacian L̃M,s. The peak height is attained at x = 0 and behaves like

(
u(t)

)
0
∼





Γ
(

s
s−1

)

πγ
t−

1

s−1 if 1 < s < 3,

1

2
√

πζ(s− 2)
t−

1

2 if s > 3

as t → ∞, where γ is as in (6.20); see (6.13). If s ∈ (1, 3), then the full width at
half maximum (FWHM) behaves like

FWHM(t) ∼ 2ξ0t
1

s−1 as t → ∞,

where ξ0 > 0 is such that f(ξ0; s− 1, 0, γ, 0) = 1
2f(0; s− 1, 0, γ, 0); see (6.14). This

shows that we have superdiffusion in this case since 1
s−1 > 1

2 . A particular case

is when s = 2, when the (rescaled) limit distribution is a Cauchy distribution and
the FWHM grows linearly, i.e. the time evolution shows ballistic diffusion. For an
interpretation of the limiting behaviour using rescaling in x see Remark 6.2. ♦

Remark 6.7. Consider the operator

L = cLa
1 (6.25)

with c > 0 and a ∈ (0, 1), i.e. La
1 is a fractional power of the standard Laplacian L1

defined, e.g. by the spectral theorem. Since the operator cLa
1 is equivalent to the

multiplication operator by

ℓ(q) = c
(
2(1− cos q)

)a

in the Fourier representation, we obtain from Lemma 6.1 that
(
u(t)

)
x
= t−

1

2a f
(
t−

1

2ax; 2a, 0, c
1

2a , 0
)
+ o

(
t−

1

2a

)
as t → ∞

when u is a solution of (6.1), (6.2) with L as in (6.25). Hence if we choose

a =
s− 1

2
and c = − π

Γ(s) cos
(
πs
2

)

for s ∈ (1, 3), we obtain the same asymptotic behaviour of u as the solution in
Theorem 6.5. However, the solutions behave differently for small t as can be seen

from Figure 6.6 where the blue solid line with circles corresponds to L = L̃M,s and
the red dashed line with squares corresponds to L = cLa

1 for t = 1 (a) and t = 3
(b). See [5] for a discussion of La

1 where it was also shown that (6.1), (6.2) with
L = La

1 is equivalent to an evolution equation with a fractional time derivative ([5,
Theorem 3]). ♦

Acknowledgement. We would like to thank an anonymous referee for many
valuable suggestions. EH thanks the Ministry of Higher Education and Scientific
Research of Iraq for a PhD Scholarship.

References

[1] T. Ala-Nissila, R. Ferrando and S.C. Ying, Collective and single particle diffusion on surfaces.
Adv. in Phys. 51 (2002), 949–1078.

[2] O.G. Bakunin, Chaotic Flows. Springer Series in Synergetics, vol. 10, Springer, Berlin Hei-
delberg, 2011.

[3] R. Carlson, Adjoint and self-adjoint differential operators on graphs. Electron. J. Differential

Equations 1998 (1998), 1–10.
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