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Abstract. Variational principles are proved for self-adjoint operator functions arising from vari-
ational evolution equations of the form

〈z̈(t),y〉+d[ż(t),y]+a0[z(t),y] = 0.

Here a0 and d are densely defined, symmetric and positive sesquilinear forms on a Hilbert
space H . We associate with the variational evolution equation an equivalent Cauchy problem
corresponding to a block operator matrix A , the forms

t(λ )[x,y] := λ 2〈x,y〉+λd[x,y]+a0[x,y],

where λ ∈ C and x,y are in the domain of the form a0 , and a corresponding operator fam-
ily T (λ ) . Using form methods we define a generalized Rayleigh functional and characterize
the eigenvalues above the essential spectrum of A by a min-max and a max-min variational
principle. The obtained results are illustrated with a damped beam equation.

1. Introduction

Variational principles are a very useful tool for the qualitative and numerical inves-
tigation of eigenvalues of self-adjoint operators and operator functions. For instance,
the eigenvalues λ1 ≤ λ2 ≤ . . . below the essential spectrum of a self-adjoint operator
A that is bounded from below and has domain D(A) can be characterized using the
Rayleigh functional

p(x) =
〈Ax,x〉
〈x,x〉 , x ∈D(A), x 6= 0,

via a min-max principle or a max-min principle:

λn = min
L⊂D(A)
dimL=n

max
x∈L\{0}

p(x) = max
L⊂H

dimL=n−1

min
x∈D(A)\{0}

x⊥L

p(x).

Variational principles were first introduced by H. Weber, Lord Rayleigh, H. Poincaré,
E. Fischer, G. Polya, and W. Ritz, H. Weyl, R. Courant (see, e.g. [4, 7, 20], and the
references therein).
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In this article we investigate variational principles for self-adjoint operator func-
tions arising from variational evolution equations of the form

〈z̈(t),y〉+d[ż(t),y]+a0[z(t),y] = 0. (1.1)

Here a0 with domain D(a0) and d with domain D(d) ⊃ D(a0) are densely defined,
symmetric and posivite sesquilinear forms on a Hilbert space H satisfying (F1)–(F3),
see Section 3. With this variational evolution equation we associate a Cauchy problem

(
ż
ẇ

)
= A

(
z
w

)
,

(
z(0)
w(0)

)
=

(
z0
w0

)
(1.2)

on D(a0)×H in such a way that the solutions of (1.1) equal the first component of the
solutions of (1.2). For λ ∈ C we define the sesquilinear form

t(λ )[x,y] := λ 2〈x,y〉+λd[x,y]+a0[x,y] (1.3)

with domain D(t(λ )) :=H 1
2

:=D(a0) . We identify a disc Φγ0 ⊂C which is the largest
disc around zero with an empty intersection with the essential spectrum of A . For
λ ∈Φγ0 we show that the form t(λ ) is closed and sectorial and that the corresponding
operator T (λ ) is m -sectorial. Moreover, on Φγ0 the spectrum (point spectrum) of A
and the spectrum (resp. point spectrum) of T coincide.

In [7] R. J. Duffin proved a variational principle for eigenvalues of a quadratic ma-
trix polynomial, which was generalized in various directions to more general operator
functions; see, e.g. the references in [9] and [19]. In [9] such a variational principle
was proved for eigenvalues of operator functions whose values are possibly unbounded
self-adjoint operators. Here we adapt this variational principle from [9] to our situation.
Using the form t(λ ) we introduce a slightly more general definition of a generalized
Rayleigh functional and we show that the variational principle generalizes to this situa-
tion. In particular, for a fixed x ∈ H 1

2
\{0} , denote the two real solutions (if they exist)

of the quadratic equation
t(λ )[x,x] = 0

by p−(x) and p+(x) such that p−(x)≤ p+(x) is satisfied and set p+(x) :=∞ , p−(x) :=
−∞ if there are no real solutions. Then the function p+ plays the role of a generalized
Rayleigh functional in our main theorem, which yields variational principles for the
real eigenvalues of A or, what is equivalent, of T . These variational principles hold
in certain real intervals ∆ above the essential spectrum of A in the disc Φγ0 with the
property that ∆ does not contain values of p− . In ∆ the spectrum of A is either empty
or consists only of a finite or infinite sequence of isolated semi-simple eigenvalues of
finite multiplicity of A . Moreover, we show that these eigenvalues λ1 ≥ λ2 ≥ ·· · ,
counted according to their multiplicities, satisfy

λn = max
L⊂H1/2
dimL=n

min
x∈L\{0}

p+(x) = min
L⊂H

dimL=n−1

sup
x∈H1/2\{0}

x⊥L

p+(x)
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and, if N < ∞ , we show for n > N that

sup
L⊂D

dimL=n

min
x∈L\{0}

p+(x)≤ inf∆ and inf
L⊂H

dimL=n−1

sup
x∈D\{0}

x⊥L

p+(x)≤ inf∆.

A major application of this variational principle is a quite general interlacing principle
which is the second main result of this article: if the stiffness operator A0 decreases and
the damping operator D increases, then the corresponding n th eigenvalue decreases
compared with the n th eigenvalue of the unchanged system. We illustrate the obtained
results with an example where we consider a beam equation with a damping such that
A0 corresponds to the fourth derivative on the interval (0,1) (with some appropriate
boundary conditions) and the damping D equals − d

dx d d
dx with some smooth function

d (and some boundary conditions).
We proceed as follows. In Section 2 we recall some basic notions of operators,

operator functions and forms. The variational principle obtained in [9] is adapted to
the setting of this paper in Section 3. Section 4 is devoted to general properties of the
class of second-order systems studied in this paper. The main results of this paper are
proved in Section 5. In particular, we study the form (1.3) and their relation to the op-
erator matrix A and the operator function T (λ ) . On a disc Φγ0 around zero, t(λ ) is a
closed sectorial form and the spectrum (point spectrum) of A and the spectrum (point
spectrum) of T coincide. Further, the variational principles for A are presented in
Theorem 4.8. As an application of the variational principle we show interlacing prop-
erties of eigenvalues of two different second-order problems with coefficients which
satisfy a specific order relation. Finally, in Section 6 we apply the obtained results to a
damped beam equation.

Throughout this paper we use the following notation. For a self-adjoint operator
S and an interval I we denote by LI(S) the spectral subspace of S corresponding to
I . A closed, densely defined operator in H is called Fredholm if the dimension of its
kernel and the (algebraic) co-dimension of its range are finite. The essential spectrum
of a closed, densely defined operator S is defined by

σess(S) :=
{

λ ∈ C | S−λ I is not Fredholm
}
.

A closed, densely defined operator T is called sectorial if its numerical range is con-
tained in a sector {z∈C |Rez≥ z0, |arg(z−z0)| ≤ θ} for some z0 ∈R and θ ∈ [0, π

2 ) .
A sectorial operator T is called m-sectorial if λ ∈ ρ(T ) for some λ with Reλ < z0 ;
see, e.g. [15, §V.3.10]. For a sesquilinear form a[ · , · ] with domain D(a) the corre-
sponding quadratic form is defined by a[x] := a[x,x] , x ∈D(a) . A form is called secto-
rial if its numerical range is contained in a sector {z ∈C | Rez≥ z0, |arg(z− z0)| ≤ θ}
for some z0 ∈ R and θ ∈ [0, π

2 ) ; see, e.g. [15, V.§3.10].

2. A general variational principle for self-adjoint operator functions

In this section we recall a general variational principle for eigenvalues of a self-
adjoint operator function from [9] adapted to the present situation. Here we also show
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some additional statements. We mention that in [9] a more general class of operator
functions was investigated.

For the rest of this section let ∆⊂ R be an interval with

a = inf∆ and b = sup∆, −∞≤ a < b≤ ∞, (2.1)

and let Ω be a domain in C such that ∆ ⊂ Ω . On Ω we consider a family of closed,
densely defined operators T (λ ) , λ ∈Ω , in a Hilbert space H with inner product 〈 · , ·〉 ,
where T (λ ) has domain D(T (λ )) . In the following we shall assume that either T (λ )
or −T (λ ) is an m-sectorial operator for λ ∈Ω . Under this assumption the sesquilinear
form 〈T (λ ) · , ·〉 is closable for λ ∈ Ω , and we denote the closure by t(λ )[ · , · ] with
domain D(t(λ )) and set t(λ )[x] := t(λ )[x,x] , which is the corresponding quadratic
form. Recall (see, e.g. [15, §VII.4]) that T := (T (λ ))λ∈Ω is called a holomorphic
family of type (B) if T (λ ) is m-sectorial for λ ∈Ω , the domain D(t(λ )) of the closed
quadratic form t(λ ) is independent of λ , which we denote by D , and λ 7→ t(λ )[x] is
holomorphic on Ω for every x ∈D .

We suppose that one of the following two conditions is satisfied.

(I) Let Ω be a domain in C and ∆⊂ Ω∩R an interval with endpoints a , b as in
(2.1). The family (T (λ ))λ∈Ω is a holomorphic family of type (B), T (λ ) is self-
adjoint for λ ∈ ∆ and there exists a c ∈ ∆ such that dimL(−∞,0)(T (c))< ∞ .

(II) Let Ω be a domain in C and ∆⊂ Ω∩R an interval with endpoints a , b as in
(2.1). The family (−T (λ ))λ∈Ω is a holomorphic family of type (B), T (λ ) is
self-adjoint for λ ∈ ∆ and there exists a c∈ ∆ such that dimL(0,∞)(T (c))< ∞ .

Note that under assumption (I) for λ ∈ ∆ the operators T (λ ) are self-adjoint and sec-
torial, and, hence, bounded from below. Similarly, under assumption (II), the operators
T (λ ) are bounded from above for λ ∈ ∆ . The condition dimL(−∞,0)(T (c)) < ∞ is
equivalent to the fact that σ(T (c))∩ (−∞,0) consists of at most a finite number of
eigenvalues of finite multiplicities.

Before we formulate the second set of assumptions, let us recall the following
definitions. The spectrum of the operator function T is defined as follows:

σ(T ) :=
{

λ ∈Ω | T (λ ) is not bijective from D(T (λ )) onto H
}

=
{

λ ∈Ω | 0 ∈ σ(T (λ ))
}
.

Similarly, the essential spectrum of the operator function T is defined as

σess(T ) :=
{

λ ∈Ω | T (λ ) is not Fredholm
}
=
{

λ ∈Ω | 0 ∈ σess(T (λ ))
}
.

A number λ ∈ Ω is called an eigenvalue of the operator function T if there exists
an x ∈ D(T (λ )) , x 6= 0, such that T (λ )x = 0. The point spectrum is the set of all
eigenvalues:

σp(T ) :=
{

λ ∈Ω | ∃x ∈D(T (λ )), x 6= 0, T (λ )x = 0
}

=
{

λ ∈Ω | 0 ∈ σp(T (λ ))
}
,
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where σp(T (λ )) denotes the point spectrum of the operator T (λ ) for fixed λ ∈ Ω .
The geometric multiplicity of an eigenvalue λ of the operator function T is defined as
the dimension of kerT (λ ) .

In addition to (I) or (II) we shall assume that one of the following two conditions
(↘) , (↗) is satisfied.

(↘) For every x ∈D \{0} the function λ 7→ t(λ )[x] is decreasing at value zero on
∆ , i.e. if t(λ0)[x] = 0 for some λ0 ∈ ∆ , then

t(λ )[x]> 0 for λ ∈ (−∞,λ0)∩∆,

t(λ )[x]< 0 for λ ∈ (λ0,∞)∩∆.

(↗) For every x ∈D \{0} the function λ 7→ t(λ )[x] is increasing at value zero on
∆ , i.e. if t(λ0)[x] = 0 for some λ0 ∈ ∆ , then

t(λ )[x]< 0 for λ ∈ (−∞,λ0)∩∆,

t(λ )[x]> 0 for λ ∈ (λ0,∞)∩∆.

If T satisfies (↗) or (↘) , then, for x ∈D \{0} , the scalar function λ 7→ t(λ )[x]
is either decreasing or increasing at a zero and, hence, it has at most one zero in ∆ .

We now introduce the notion of a generalized Rayleigh functional p , which is a
mapping from D \{0} to R∪{±∞} . If there is a zero λ0 of the scalar function λ 7→
t(λ )[x] in ∆ , then the corresponding value of a generalized Rayleigh functional p(x)
must equal this zero; p(x) = λ0 . Otherwise, there is some freedom in the definition.
More precisely, we use the following definition.

DEFINITION 2.1. Let ∆ and Ω be as above. Moreover, let T (λ ) , λ ∈ Ω , be a
family of closed operators in a Hilbert space H satisfying either (I) or (II) and which
satisfies also (↗) or (↘) . In the case (↘) a mapping p : D \{0}→ R∪{±∞} with
the properties

p(x)





= λ0 if t(λ0)[x] = 0,

< a if a ∈ ∆ and t(λ )[x]< 0 for all λ ∈ ∆,

≤ a if a /∈ ∆ and t(λ )[x]< 0 for all λ ∈ ∆,

> b if b ∈ ∆ and t(λ )[x]> 0 for all λ ∈ ∆,

≥ b if b /∈ ∆ and t(λ )[x]> 0 for all λ ∈ ∆.

is called a generalized Rayleigh functional for T on ∆ . In the case (↗) a mapping
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p : D \{0}→ R∪{±∞} with the properties

p(x)





= λ0 if t(λ0)[x] = 0,

> b if b ∈ ∆ and t(λ )[x]< 0 for all λ ∈ ∆,

≥ b if b /∈ ∆ and t(λ )[x]< 0 for all λ ∈ ∆,

< a if a ∈ ∆ and t(λ )[x]> 0 for all λ ∈ ∆,

≤ a if a /∈ ∆ and t(λ )[x]> 0 for all λ ∈ ∆.

(2.2)

is called a generalized Rayleigh functional for T on ∆ .

REMARK 2.2. One possible choice for p in the case (↘) is the following (see
[4, 9]). For x ∈D \{0} set

p(x) =





λ0 if t(λ0)[x] = 0,

−∞ if t(λ )[x]< 0 for all λ ∈ ∆,

+∞ if t(λ )[x]> 0 for all λ ∈ ∆,

which was used as a definition of a generalized Rayleigh functional in [4, 9]. However,
here we propose to use the Definition 2.1. This has the following advantage: if p is
a generalized Rayleigh functional for T on ∆ , then the same p remains a generalized
Rayleigh functional in the sense of Definition 2.1 for T on a smaller interval ∆′ with
∆′ ⊂ ∆ . Moreover, in many applications, including the one in Section 5, the operator
function T is defined on a larger interval ∆̃ ⊃ ∆ but satisfies, say, (↘) only on ∆ . If
t(·)[x] has a zero λ0 in ∆̃ where λ0 < a and t(λ )[x] < 0 for all λ ∈ ∆ , one can set
p(x) := λ0 .

EXAMPLE 2.3. We consider two examples to illustrate the notion of a general-
ized Rayleigh functional.

(i) Let A be a bounded self-adjoint operator in a Hilbert space H and consider
the operator function T (λ ) = A−λ I , λ ∈Ω = C . The corresponding quadratic
forms are t(λ )[x] = 〈Ax,x〉− λ‖x‖2 , x ∈ D = H . If we take ∆ = R , then T
satisfies condition (I), where one can choose any c < minσ(A) ; it also satisfies
(II), where one can choose any c>maxσ(A) . Moreover, the function T satisfies
condition (↘) since t′(λ )[x] = −‖x‖2 . For each x ∈ H \ {0} the function
t(·)[x] has the unique zero

p(x) =
〈Ax,x〉
‖x‖2 ;

hence the classical Rayleigh quotient is a generalized Rayleigh functional in the
sense of Definition 2.1.

(ii) In H = C2 consider the quadratic operator function

T (λ ) =
[

λ 2−2λ +1 −2
−2 λ 2 +1

]
, λ ∈Ω := C,
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and choose ∆ := (−∞,0) . Clearly, conditions (I) and (II) are satisfied. For x =(x1
x2

)
∈ C2 one has

t(λ )[x] = 〈T (λ )x,x〉= ‖x‖2λ 2−2|x1|2λ +‖x‖2−4Re(x1x2).

Since the coefficient of λ is non-positive, the sum of the two zeros of the poly-
nomial t(·)[x] is non-negative if x 6= 0, and therefore at most one zero can be in
∆ . At any such zero the function must be decreasing, which shows that condition
(↘) is satisfied. Moreover, t(·)[x] is positive on ∆ if it has no negative zero.
Hence a possible choice for a generalized Rayleigh functional is given by

p(x) =





|x1|2−
√
|x1|4−‖x‖2 +4Re(x1x2)

‖x‖2 if |x1|4−‖x‖2 +4Re(x1x2)≥ 0,

∞ otherwise.

Note that three cases occur: (a) t(·)[x] has a positive and a negative zero, in
which case p(x) equals the negative zero; (b) t(·)[x] has two positive zeros,
in which case p(x) > 0 = sup∆ ; (c) t(·)[x] has no real zeros, in which case
p(x) = ∞ . Examples for these three cases are given by the vectors

(1
1

)
,
( 2
−1

)
,( 1

−1

)
, respectively.

For a generalized Rayleigh functional p as in Definition 2.1 we have for λ ∈ ∆ , x ∈
D(T (λ ))\{0} ,

T (λ )x = 0 =⇒ p(x) = λ .
If T satisfies (↘) , then for x ∈D \{0}

t(λ )[x]> 0 ⇐⇒ p(x)> λ ,
t(λ )[x]< 0 ⇐⇒ p(x)< λ ;

(2.3)

if T satisfies (↗) , then for x ∈D \{0}
t(λ )[x]> 0 ⇐⇒ p(x)< λ ,
t(λ )[x]< 0 ⇐⇒ p(x)> λ .

(2.4)

In [9, Theorem 2.1] a variational principle involving a generalized Rayleigh func-
tional was derived. There the generalized Rayleigh functional was defined as in Re-
mark 2.2 and not in the (slightly more general) way as in Definition 2.1. Therefore,
the variational principle in the following theorem is an adapted version of [9, Theo-
rem 2.1] where a non-decreasing sequence of eigenvalues of an operator function is
characterized. Moreover, in [9, Theorem 2.1] only the case (I), (↘ ) was considered
(under slightly weaker assumptions on t ).

THEOREM 2.4. Let ∆ and Ω be as above. Moreover, let T (λ ) , λ ∈ Ω , be a
family of closed operators in a Hilbert space H satisfying either (I), (↘ ) or (II), (↗ ),
let p be a generalized Rayleigh functional and assume that

∆′ :=

{
∆ if σess(T )∩∆ = /0,
{

λ ∈ ∆ | λ < inf
(
σess(T )∩∆

)}
if σess(T )∩∆ 6= /0,
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is non-empty.
Then σ(T )∩∆′ is either empty or consists only of a finite or infinite sequence

of isolated eigenvalues of T with finite geometric multiplicities, which in the case of
infinitely many eigenvalues in σ(T )∩ ∆′ accumulates only at sup∆′ (which equals
inf(σess(T )∩∆) if σess(T )∩∆ 6= /0 and equals b otherwise).

If σ(T )∩ ∆′ is empty, then set N := 0 ; otherwise, denote the eigenvalues in
σ(T )∩∆′ by (λ j)

N
j=1 , N ∈ N∪{∞} , in non-decreasing order, counted according to

their geometric multiplicities: λ1 ≤ λ2 ≤ ·· · . Choose a′ ∈ ∆′ so that in the case N > 0
it satisfies a′ ≤ λ1 . Then the quantity

κ :=

{
dimL(−∞,0)

(
T (a′)

)
if (I), (↘) are satisfied,

dimL(0,∞)

(
T (a′)

)
if (II), (↗) are satisfied,

is a finite number. Moreover, the nth eigenvalue λn , n ∈ N , n≤ N , satisfies

λn = min
L⊂D

dimL=κ+n

sup
x∈L\{0}

p(x), (2.5)

λn = max
L⊂H

dimL=κ+n−1

inf
x∈D\{0}

x⊥L

p(x). (2.6)

For subspaces L with dimensions not considered in (2.5) and (2.6) the right-hand side
of (2.5) and (2.6) gives values with the following properties: if κ > 0 , then

inf
L⊂D

dimL=n

sup
x∈L\{0}

p(x) ≤ a

sup
L⊂H

dimL=n−1

inf
x∈D\{0}

x⊥L

p(x) ≤ a
for n = 1, . . . ,κ; (2.7)

if N < ∞ , then

inf
L⊂D

dimL=n

sup
x∈L\{0}

p(x) ≥ sup∆′

sup
L⊂H

dimL=n−1

inf
x∈D\{0}

x⊥L

p(x) ≥ sup∆′
for n > κ +N with n≤ dimH. (2.8)

Proof. Let us first consider the case when (I), (↘ ) are satisfied. We apply [9, The-
orem 2.1]. Since T is a holomorphic family of type (B), [9, Proposition 2.13] implies
that conditions (i) and (ii) of [9, Theorem 2.1] are satisfied. It follows directly from (I)
and (↘) that (iii) and (iv) of [9, Theorem 2.1] are also satisfied. Now [9, Theorem 2.1]
implies that σ(T )∩∆′ is either empty or consists of a sequence of isolated eigenvalues
that can accumulate at most at sup∆′ .

Set

∆1 :=





∆′ if N = 0,
{

µ ∈ ∆′ | µ ≤ λ1
}

otherwise.
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In [9, Theorem 2.1] the number κ was defined as dimL(−∞,0)
(
T (a′′)

)
with a particular

choice of a′′ ∈ ∆1 . However, the function

λ 7→ dimL(−∞,0)
(
T (λ )

)

is constant on ∆1 by [9, Lemma 2.6]. Hence we choose an arbitrary a′ ∈ ∆1 for the
definition of κ , which by [9, Theorem 2.1 and Lemma 2.6] is a finite number:

κ = dimL(−∞,0)
(
T (a′)

)
.

Let us now prove (2.5). In [9] a special choice of a generalized Rayleigh functional
was considered; see Remark 2.2. In order to distinguish it, we denote it by q , i.e. for
x ∈D \{0} we set

q(x) :=





λ0 if t(λ0)[x] = 0,

−∞ if t(λ )[x]< 0 for all λ ∈ ∆,

+∞ if t(λ )[x]> 0 for all λ ∈ ∆.

If p(x) ∈ ∆ or q(x) ∈ ∆ holds for some x ∈D \{0} , then by the definition of p and q
we have t(p(x))[x] = 0 or t(q(x))[x] = 0, respectively, and thus p(x) = q(x) follows.
In [9, Theorem 2.1] it was proved that

λn = min
L⊂D

dimL=κ+n

max
x∈L\{0}

q(x)

for n ∈ N , n ≤ N . Let n ∈ N with n ≤ N . There exists a subspace L0 ⊂ D with
dimL0 = κ +n such that

max
x∈L0\{0}

q(x) = λn,

which implies in particular that q(x)≤ λn for all x ∈ L0 \{0} . If, for x ∈ L0 \{0} , we
have q(x) = −∞ , then p(x) ≤ a by the definitions of p and q , and hence p(x) ≤ λn .
If, for x ∈ L0 \{0} , we have q(x) 6= −∞ , then q(x) ∈ ∆ and hence p(x) = q(x) ≤ λn .
This implies that

sup
x∈L0\{0}

p(x)≤ max
x∈L0\{0}

q(x) = λn. (2.9)

Let L⊂D be an arbitrary subspace with dimL = κ +n . Then, by the definition of L0 ,

max
x∈L\{0}

q(x)≥ max
x∈L0\{0}

q(x) = λn.

Hence there exists an x0 ∈ L \ {0} with q(x0) ≥ λn . If q(x0) = +∞ , then p(x0) ≥ b
and, in particular, p(x0) ≥ λn . If q(x0) 6= +∞ , then q(x0) ∈ ∆ , which implies that
p(x0) = q(x0)≥ λn . Hence

sup
x∈L\{0}

p(x)≥ λn. (2.10)

By (2.9) and (2.10) we obtain (2.5). Equation (2.6) is shown in a similar way.
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Next we prove the first inequality in (2.7). Let n ≤ κ and let λ ∈ ∆1 be arbi-
trary. We have seen above that dimL(−∞,0)(T (λ )) = κ . Therefore we can choose
an n -dimensional subspace of L(−∞,0)(T (λ )) , which we denote by L0 and which is
contained in D(T (λ ))⊂D . Since t(λ )[x]< 0 for all x ∈ L0 \{0} , we have

inf
L⊂D

dimL=n

sup
x∈L\{0}

p(x)≤ sup
x∈L0\{0}

p(x)≤ λ .

This implies the first inequality in (2.7) since λ ∈ ∆1 was arbitrary. The second in-
equality in (2.7) is shown in a similar way.

We show the first inequality in (2.8). Let n > κ +N . If we have λN = b = sup∆′ ,
then (2.8) follows from (2.5). In all other cases, choose λ ∈ ∆′ such that λ > λN if
N > 0. It follows from [9, Lemmas 2.6 and 2.7] that dimL(−∞,0)(T (λ )) = κ +N .
Hence, for each subspace L⊂D with dimL = n , there exists an x0 ∈ L\{0} such that
t(λ )[x0]≥ 0. Therefore

sup
x∈L\{0}

p(x)≥ p(x0)≥ λ .

Since this is true for every such L , we have

inf
L⊂D

dimL=n

sup
x∈L\{0}

p(x)≥ λ ,

which implies the validity of the first inequality in (2.8) as λ can be chosen arbitrar-
ily close to sup∆′ ; see [9, Lemma 2.6]. In a similar way one can show the second
inequality in (2.8).

If instead of (I), (↘ ) the assumptions (II), (↗ ) are satisfied, then the function
T̃ (λ ) := −T (λ ) satisfies the assumptions (I), (↘ ) and p̃(x) := p(x) is a generalized
Rayleigh functional for T̃ on ∆ , see Definition 2.1. Hence we can apply the already
proved statements to T̃ , which imply all assertions also in this situation as σp(T̃ ) =
σp(T ) .

REMARK 2.5.

(i) Instead of assuming that T is a holomorphic family of type (B) it is sufficient
to assume some weaker continuity properties. Also the domain of the quadratic
form may depend on λ . For further details see [9], in particular, the assumptions
(i) and (ii) there.

(ii) If the functional p is chosen such that it is continuous as a mapping from D into
the extended real numbers R∪{±∞} and p(cx) = p(x) for all c ∈ C\{0} and
x∈D , then the supremum in (2.5) is actually a maximum, i.e. the eigenvalue λn ,
n ∈ N , n≤ N , satisfies

λn = min
L⊂D

dimL=κ+n

max
x∈L\{0}

p(x).

This follows from the fact that it is sufficient to take the supremum over the set
{x ∈ L | ‖x‖ = 1} , which is compact. The same statement applies to (2.7) and
(2.8).
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A similar theorem holds if we replace in Theorem 2.4 the assumption (I), (↘ ) by (I),
(↗ ) and (II), (↗ ) by (II), (↘ ), respectively, and change ∆′ accordingly. This is done
in the following theorem.

THEOREM 2.6. Let ∆ and Ω be as above. Moreover, let T (λ ) , λ ∈ Ω , be a
family of closed operators in a Hilbert space H satisfying either (I), (↗ ) or (II), (↘ ),
let p be a generalized Rayleigh functional and assume that

∆′ :=

{
∆ if σess(T )∩∆ = /0,
{

λ ∈ ∆ | λ > sup
(
σess(T )∩∆

)}
if σess(T )∩∆ 6= /0,

is non-empty.
Then σ(T )∩∆′ is either empty or consists only of a finite or infinite sequence

of isolated eigenvalues of T with finite geometric multiplicities, which in the case of
infinitely many eigenvalues in σ(T )∩ ∆′ accumulates only at inf∆′ (which equals
sup(σess(T )∩∆) if σess(T )∩∆ 6= /0 and equals a otherwise).

If σ(T )∩ ∆′ is empty, then set N := 0 ; otherwise, denote the eigenvalues in
σ(T )∩∆′ by (λ j)

N
j=1 , N ∈ N∪{∞} , in non-increasing order, counted according to

their geometric multiplicities: λ1 ≥ λ2 ≥ ·· · . Choose b′ ∈ ∆′ so that in the case N > 0
it satisfies λ1 ≤ b′ . Then the quantity

κ :=

{
dimL(−∞,0)

(
T (b′)

)
if (I), (↗) are satisfied,

dimL(0,∞)

(
T (b′)

)
if (II), (↘) are satisfied,

is a finite number. Moreover, the nth eigenvalue λn , n ∈ N , n≤ N , satisfies

λn = max
L⊂D

dimL=κ+n

inf
x∈L\{0}

p(x), (2.11)

λn = min
L⊂H

dimL=κ+n−1

sup
x∈D\{0}

x⊥L

p(x). (2.12)

For subspaces L with dimensions not considered in (2.11) and (2.12) the right-hand
side of (2.11) and (2.12) gives values with the following properties: if κ > 0 , then

sup
L⊂D

dimL=n

inf
x∈L\{0}

p(x) ≥ b

inf
L⊂H

dimL=n−1

sup
x∈D\{0}

x⊥L

p(x) ≥ b
for n = 1, . . . ,κ; (2.13)

if N < ∞ , then

sup
L⊂D

dimL=n

inf
x∈L\{0}

p(x) ≤ inf∆′

inf
L⊂H

dimL=n−1

sup
x∈D\{0}

x⊥L

p(x) ≤ inf∆′
for n > κ +N with n≤ dimH. (2.14)
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Proof. The theorem follows from Theorem 2.4 applied to the function T̂ (λ ) :=
T (−λ ) , −λ ∈ Ω . With â := −b , b̂ := −a and ∆̂ := {−λ | λ ∈ ∆} all assumptions
of Theorem 2.4 are satisfied, namely (I) and (II) remain the same and (↘) turns into
(↗) and vice versa. That is, T̂ satisfies either (I), (↘ ) or (II), (↗ ). Then the mapping
p̂(x) := −p(x) is a generalized Rayleigh functional for T̂ on ∆̂ ; see Definition 2.1.
Since λ̂n = −λn for λ̂n ∈ σp(T̂ ) , all assertions of Theorem 2.6 follow from Theo-
rem 2.4.

REMARK 2.7. If the functional p is chosen such that it is continuous and p(cx)=
p(x) for c∈C\{0} and x∈D (see Remark 2.5), then the infimum in (2.11) is actually
a minimum, i.e. the eigenvalue λn , n ∈ N , n≤ N , satisfies

λn = max
L⊂D

dimL=κ+n

min
x∈L\{0}

p(x).

A similar statement applies to (2.13) and (2.14).

3. Framework

Let H be a Hilbert space and let a0 and d be sesquilinear forms on H with do-
mains D(a0) and D(d) , respectively, such that the following conditions are satisfied.

(F1) The sesquilinear form a0 is densely defined, closed, symmetric and bounded
from below by a positive constant, i.e. ∃c1 > 0 such that a0[x] ≥ c1‖x‖2 for
x ∈D(a0) .

(F2) The sesquilinear form d is symmetric, satisfies D(d)⊃D(a0) , and there ex-
ists a c2 > 0 such that

0≤ d[x]≤ c2a0[x] for all x ∈D(a0).

It is our aim to study the following second order differential equation

〈z̈(t),y〉+d[ż(t),y]+a0[z(t),y] = 0 for all y ∈D(a0). (3.1)

In a first step we find an equivalent Cauchy problem. Then, using the standard theory
of semigroups, we obtain solutions of (3.1). Therefore we associate with the form a0 a
positive definite self-adjoint operator A0 with D(A0) ⊂ D(a0) and 0 ∈ ρ(A0) via the
First Representation Theorem [15, Theorem VI.2.1], i.e.

a0[x,y] = 〈A0x,y〉 for all x ∈D(A0), y ∈D(a0). (3.2)

The operator A0 is called stiffness operator. The Second Representation Theorem [15,
Theorem VI.2.6] shows D(A1/2

0 ) = D(a0) and

a0[x,y] = 〈A1/2
0 x,A1/2

0 y〉 for all x,y ∈D(a0).
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We define the two spaces

H 1
2

:= D(A1/2
0 ) with norm ‖x‖H 1

2
:=
∥∥A1/2

0 x
∥∥

H (3.3)

and
H− 1

2
as the completion of H with respect to the norm

‖x‖H− 1
2

:=
∥∥A−1/2

0 x
∥∥

H .
(3.4)

By continuity, A0 and A1/2
0 can be extended to isometric isomorphisms from H 1

2
onto

H− 1
2

and from H onto H− 1
2

, respectively. These extensions are also denoted by A0

and A1/2
0 . The space H− 1

2
can be identified with the dual space of H 1

2
by identifying

elements x ∈ H− 1
2

with bounded linear functionals on H 1
2

as follows

〈x,y〉H− 1
2
×H 1

2
:=
〈
A−1/2

0 x,A1/2
0 y

〉
, x ∈ H− 1

2
, y ∈ H 1

2
. (3.5)

Note that, for x ∈ H , y ∈ H 1
2

, we have

〈x,y〉H− 1
2
×H 1

2
= 〈x,y〉H . (3.6)

The form a0 can be expressed in terms of the extended operator A0 :

a0[x,y] = 〈A0x,y〉H− 1
2
×H 1

2
for all x,y ∈ H 1

2
; (3.7)

this relation is obtained from (3.2) by continuous extension.
Assumption (F2) implies that d restricted to H 1

2
is a bounded, non-negative, sym-

metric sesquilinear form on the Hilbert space H 1
2

. Hence, by [15, Theorem VI.2.7]

there exists a bounded, self-adjoint, non-negative operator D̃ on H 1
2

such that

d[x,y] =
〈
D̃x,y

〉
H 1

2

for all x,y ∈ H 1
2
.

Now we define the damping operator D by

D := A0D̃,

where A0 is considered as a bounded operator from H 1
2

onto H− 1
2

. Clearly, the oper-
ator D is bounded from H 1

2
to H− 1

2
. Using (3.5) we obtain the following connection

between d and D :

d[x,y] =
〈
D̃x,y

〉
H 1

2

=
〈
A1/2

0 D̃x,A1/2
0 y

〉

=
〈
A−1/2

0 Dx,A1/2
0 y

〉
= 〈Dx,y〉H− 1

2
×H 1

2

(3.8)
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for x,y ∈ H 1
2

.
We consider the following standard first-order evolution equation

ẋ(t) = A x(t) (3.9)

in the space H := H 1
2
×H where A : D(A )⊂H →H is given by

A =

[
0 I
−A0 −D

]
, (3.10)

D(A ) =

{(
z
w

)
∈ H 1

2
×H 1

2

∣∣∣ A0z+Dw ∈ H
}
. (3.11)

It is easy to see (e.g. [18]) that A has a bounded inverse in H given by

A −1 =

[
−A−1

0 D −A−1
0

I 0

]
=

[
−D̃ −A−1

0

I 0

]
, (3.12)

where A−1
0 D is considered as an operator acting in H 1

2
and I is the embedding from

H 1
2

into H . The operator A itself is not self-adjoint in the Hilbert space H . However,
with

J :=
[

I 0
0 −I

]

the operator JA is symmetric in H . Since A has a bounded inverse, the operator
JA is even self-adjoint in H . Therefore,

A ∗ = JA J, with D(A ∗) = JD(A )

(see also [21, Proof of Lemma 4.5]) and

Re〈A x,x〉 ≤ 0 for x ∈D(A ) and Re〈A ∗x,x〉 ≤ 0 for x ∈D(A ∗).

This implies that A is the generator of a strongly continuous semigroup of contractions
on the state space H . This fact is well known; see, e.g. [2, 3, 6, 10, 16] or [21,
Proposition 5.1]. Hence, (3.9) together with an initial value has a unique (classical)
solution. This implies the following proposition.

PROPOSITION 3.1. Assume that (F1)–(F2) are satisfied. For z0,w0 ∈ H 1
2

with

A0z0 +Dw0 ∈ H there exists a solution z : R+→ H 1
2

of (3.1) that satisfies

• z(0) = z0 and ż(0) = w0 ;

• the function z is continuously differentiable in H 1
2

;

• the function ż is continuously differentiable in H .
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Moreover, a solution of (3.1) with the above properties is unique and equals the first
component of the classical solution of the Cauchy problem

(
ż
ẇ

)
= A

(
z
w

)
,

(
z(0)
w(0)

)
=

(
z0
w0

)
(3.13)

with
( z0

w0

)
∈D(A ) .

We mention that a similar relation holds for mild solutions of the Cauchy problem
(3.13) with

( z0
w0

)
in H instead of D(A ) and a somehow weaker formulation of (3.1),

d
dt

(
〈ż(t),y〉+d[z(t),y]

)
+a0[z(t),y] = 0 for all y ∈D(a0). (3.14)

For details we refer to [6, Theorem 2.2], see also [3].

REMARK 3.2. The operators A0 and D satisfy the following conditions (A1) and
(A2), which appeared in various papers; see, e.g. [12, 14, 13].

(A1) The stiffness operator A0 : D(A0)⊂ H→ H is a self-adjoint, positive definite
linear operator on a Hilbert space H such that 0 ∈ ρ(A0) .

(A2) The damping operator D : H 1
2
→ H− 1

2
is a bounded operator with

〈Dz,z〉H− 1
2
×H 1

2
≥ 0, z ∈ H 1

2
.

Instead of starting with the forms and then constructing the operators one could also
start with two operators A0 and D that satisfy (A1) and (A2) and then define the
sesquilinear forms a0 and d via

a0[x,y] := 〈A0x,y〉H− 1
2
×H 1

2
,

d[x,y] := 〈Dx,y〉H− 1
2
×H 1

2
,

x,y ∈ H 1
2
.

It is easy to see that these forms satisfy (F1) and (F2).

In the following we study the spectrum of A . For
( x1

y1

)
,
( x2

y2

)
∈H 1

2
×H we define

an indefinite inner product on H by
[(

x1
y1

)
,

(
x2
y2

)]
:=
〈

J
(

x1
y1

)
,

(
x2
y2

)〉
= 〈x1,x2〉H 1

2
−〈y1,y2〉.

Then (H , [ ·, · ]) is a Krein space and A is a self-adjoint operator with respect to [ ·, · ]
(note that the latter is equivalent to the self-adjointness of JA in H ). Hence σ(A )
is symmetric with respect to R ; see, e.g. [5, Theorem VI.6.1]. For the basic theory
of Krein spaces and operators acting therein we refer to [1] and [5]. In the following
proposition we collect the above considerations.
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PROPOSITION 3.3. If (F1) and (F2) are satisfied, then the operator A is self-
adjoint in the Krein space (H , [ ·, · ]) , its spectrum is contained in the closed left half-
plane and is symmetric with respect to the real line. The operator A has a bounded
inverse, and it is the generator of a strongly continuous semigroup of contractions on
the state space H .

The last statement of Proposition 3.3 guarantees that the spectrum of A is con-
tained in C− , where C− denotes the closed left half-plane {z ∈ C | Rez ≤ 0} . Since
A has a bounded inverse, we even have σ(A )⊂ C− \{0} . However, apart from this
restriction and the symmetry with respect to the real line, the spectrum of A is quite
arbitrary; see, e.g. [11, Examples 3.5 and 3.6] and we refer to Example 3.2 in [12].

For the rest of the paper we assume that, in addition to (F1) and (F2), also the
following condition is satisfied.

(F3) The operator A−1
0 is a compact operator in H .

In the following we consider D̃= A−1
0 D and A−1/2

0 DA−1/2
0 as bounded operators acting

in H 1
2

and H , respectively. For λ ∈ C the relations

ker
(
A−1/2

0 DA−1/2
0 −λ

)
= A1/2

0

(
ker
(
D̃−λ

))
,

ran
(
A−1/2

0 DA−1/2
0 −λ

)
= A1/2

0

(
ran
(
D̃−λ

))

hold. This, together with the fact that A1/2
0 is an isomorphism from H 1

2
onto H , implies

that

σ
(
A−1/2

0 DA−1/2
0

)
= σ

(
D̃
)
, σess

(
A−1/2

0 DA−1/2
0

)
= σess

(
D̃
)
. (3.15)

In the next definition we introduce some numbers that are used in the following proposi-
tion for a further description of the spectrum of A and in the next section in connection
with the study of a quadratic operator polynomial.

DEFINITION 3.4. Set

δ := minσ
(
A−1/2

0 DA−1/2
0

)
, γ := maxσ

(
A−1/2

0 DA−1/2
0

)
. (3.16)

If H is finite-dimensional, then set

δ0 :=+∞, γ0 := 0; (3.17)

otherwise, set

δ0 := minσess
(
A−1/2

0 DA−1/2
0

)
, γ0 := maxσess

(
A−1/2

0 DA−1/2
0

)
. (3.18)

Moreover, if H is infinite-dimensional, δ0 = 0 and γ0 > 0, then set

δ1 := inf
(
σess
(
A−1/2

0 DA−1/2
0

)
\{0}

)
. (3.19)
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If H is infinite-dimensional, then clearly 0 ≤ δ ≤ δ0 ≤ γ0 ≤ γ . The numbers δ
and γ can be expressed in terms of the forms a0 and d :

δ = inf
x∈H\{0}

〈
A−1/2

0 DA−1/2
0 x,x

〉

‖x‖2 = inf
y∈H1/2\{0}

〈Dy,y〉H− 1
2
×H 1

2

〈A0y,y〉H− 1
2
×H 1

2

= inf
y∈H1/2\{0}

d[y]
a0[y]

,

(3.20)

where we made the substitution y = A−1/2
0 x , and similarly

γ = sup
y∈H1/2\{0}

d[y]
a0[y]

. (3.21)

If H is infinite-dimensional, then one can use the standard variational principle for
bounded operators to express δ0 and γ0 in terms of a0 and d :

δ0 = sup
n∈N

inf
L⊂H1/2
dimL=n

sup
y∈L\{0}

d[y]
a0[y]

, γ0 = inf
n∈N

sup
L⊂H1/2
dimL=n

inf
y∈L\{0}

d[y]
a0[y]

. (3.22)

PROPOSITION 3.5. Assume that (F1)–(F3) are satisfied. Then

σess(A ) =

{
λ ∈ C\{0}

∣∣∣ 1
λ
∈ σess

(
−D̃
)}

(3.23)

=

{
λ ∈ C\{0}

∣∣∣ 1
λ
∈ σess

(
−A−1/2

0 DA−1/2
0

)}
(3.24)

⊂ (−∞,0). (3.25)

The spectrum in C\σess(A ) is a discrete set consisting only of eigenvalues. Moreover,
the set σ(A )\R has no finite accumulation point.

Moreover, the following statements are true:

• if γ0 = 0 , then σess(A ) = /0 ;

• if γ0 > 0 and δ0 = 0 , then

infσess(A ) =





−∞ if δ1 = 0,

− 1
δ1

if δ1 > 0,

maxσess(A ) =− 1
γ0

;

17



• if δ0 > 0 , then

minσess(A ) =− 1
δ0

and maxσess(A ) =− 1
γ0

.

Proof. The equality in (3.23) was proved in [12, Theorem 4.1]. Relation (3.15)
implies (3.24), and (3.25) follows from assumption (F2). The discreteness of the spec-
trum in C \σess(A ) follows from Fredholm theory and the fact that C \σess(A ) is
a connected set and has non-empty intersection with ρ(A ) , namely 0 ∈ ρ(A )∩ (C\
σess(A )) by (3.12). Corollary 5.2 in [12] implies that no point from σess(A ) is an
accumulation point of the non-real spectrum of A , which shows that the non-real spec-
trum has no finite accumulation point. The remaining assertions are clear.

Note that, although A−1
0 is compact, the operator A −1 is in general not a compact

operator in H . In fact, A −1 is compact if and only if the operator D is compact as an
operator acting from H 1

2
into H− 1

2
; see [17, Lemma 3.2].

4. A quadratic operator polynomial

In the following we construct a quadratic operator polynomial T (λ ) that is con-
nected with the operator A and also the differential equation (3.1). Throughout this
section let a0 and d be sesquilinear forms that satisfy (F1)–(F3) from Section 3. More-
over, let the operators A0 , D , A and the numbers δ , γ , δ0 , γ0 be as in Section 3. It
follows from (3.20) and (3.21) that

δa0[x]≤ d[x]≤ γa0[x], x ∈ H 1
2
. (4.1)

Before we define the operator polynomial T (λ ) , we need two lemmas.

LEMMA 4.1. Let R be a compact operator in H and ε an arbitrary positive
number. Then there exists a constant C ≥ 0 such that

‖RA1/2
0 x‖2 ≤ ε‖A1/2

0 x‖2 +C‖x‖2 for all x ∈ H 1
2
.

Proof. The operator RA1/2
0 A−1/2

0 = R is a compact operator in H . Hence RA1/2
0

is A1/2
0 -compact; see, e.g. [15, Section IV.1.3]. By [8, Corollary III.7.7], RA1/2

0 has
A1/2

0 -bound 0, which implies the assertion (see [15, §V.4.1]).

Define the following set, on which the operator polynomial T (λ ) will be defined:

Φγ0 :=





{
z ∈ C

∣∣∣ |z|< 1
γ0

}
if γ0 6= 0,

C if γ0 = 0.
(4.2)
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LEMMA 4.2. For λ ∈ Φγ0 the form λd is relatively bounded with respect to a0
with a0 -bound less than 1 , i.e. there exist real constants C1,C2 with C1≥ 0 , 0≤C2 < 1
such that ∣∣λd[x]

∣∣≤C1‖x‖2 +C2a0[x] for all x ∈ H 1
2
= D(a0).

Proof. Obviously, for λ = 0 the assertion of Lemma 4.2 is true. Let λ ∈Φγ0 \{0}
and choose γ ′ ∈ R such that γ0 < γ ′ < 1

|λ | . Denote by E the spectral function in

H corresponding to the bounded selfadjoint operator S := A−1/2
0 DA−1/2

0 . Then, for
x ∈ H 1

2
, we have

∣∣d[x]
∣∣= 〈Dx,x〉H− 1

2
×H 1

2
= 〈A−1/2

0 Dx,A1/2
0 x〉= 〈SA1/2

0 x,A1/2
0 x〉

=
〈
SE([0,γ ′])A1/2

0 x,E([0,γ ′])A1/2
0 x

〉

+
〈
SE((γ ′,∞))A1/2

0 x,E((γ ′,∞))A1/2
0 x

〉

≤ γ ′
∥∥E([0,γ ′])A1/2

0 x
∥∥2

+
∥∥S1/2E((γ ′,∞))A1/2

0 x
∥∥2

≤ γ ′‖A1/2
0 x‖2 +

∥∥S1/2E((γ ′,∞))A1/2
0 x

∥∥2
.

By the definition of γ0 and the fact that γ ′ > γ0 it follows that E((γ ′,∞)) is a finite
rank projection. Choose ε > 0 such that |λ |(γ ′+ ε) < 1, which is possible because
γ ′ < 1

|λ | . Then Lemma 4.1 applied to the finite rank operator S1/2E((γ ′,∞)) implies
that there exists a C ≥ 0 such that

∣∣λd[x]
∣∣≤ |λ |γ ′‖A1/2

0 x‖2 + |λ |
(

ε‖A1/2
0 x‖2 +C‖x‖2

)

= |λ |(γ ′+ ε)a0[x]+ |λ |C‖x‖2,

which shows that λd is a0 -bounded with a0 -bound less than 1.

For λ ∈ C we define the sesquilinear form t(λ ) with domain D(t(λ )) = H 1
2

by

t(λ )[x,y] := λ 2〈x,y〉+λd[x,y]+a0[x,y] x,y ∈ H 1
2
, (4.3)

and the corresponding quadratic form by t(λ )[x] := t(λ )[x,x] for x ∈ H 1
2

. Note that if

a function of the form z(t) = eλ tx with x ∈ H 1
2

is plugged into (3.1), then one obtains
the equation t(λ )[x,y] = 0. Using (3.7) and (3.8) we can rewrite t(λ ) as follows:

t(λ )[x,y] :=
〈
λ 2x+λDx+A0x,y

〉
H− 1

2
×H 1

2

x,y ∈ H 1
2
. (4.4)

In the next proposition we introduce the representing operators T (λ ) for λ ∈Φγ0 and
state some of their properties.
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PROPOSITION 4.3. For λ ∈ Φγ0 the form t(λ ) with domain D(t(λ )) = H 1
2

is
a closed sectorial form in H . The m-sectorial operator T (λ ) in H that is associated
with t(λ ) is given by

D(T (λ )) =
{

x ∈ H 1
2
| λDx+A0x ∈ H

}
,

T (λ )x = λ 2x+λDx+A0x, x ∈D(T (λ )).

The family T (λ ) , λ ∈ Φγ0 , of m-sectorial operators is a holomorphic family of type
(B), which satisfies T (λ ) = T (λ )∗ for λ ∈Φγ0 . For λ ∈Φγ0 ∩R the operators T (λ )
are self-adjoint and bounded from below.

Proof. Since a0 is a closed symmetric non-negative form and, by Lemma 4.2, λd
is bounded with respect to a0 with a0 -bound less than 1, it follows from [15, The-
orem VI.1.33] that t(λ ) is closed and sectorial for λ ∈ Φγ0 . Hence by [15, Theo-
rem VI.2.1] there exist m-sectorial operators T (λ ) that represent the forms t(λ ) . The
form of the domain and the action of T (λ ) follow easily from [15, Theorem VI.2.1].
The domain of t(λ ) is independent of λ , and the analyticity of λ 7→ t(λ )[x] is clear.
Hence T is a holomorphic family of type (B). Since t(λ )[x,y] = t(λ )[y,x] , we have
T (λ ) = T (λ )∗ ; see [15, Theorem VI.2.5]. From this we obtain also the self-adjointness
of T (λ ) for λ ∈Φγ0 ∩R ; moreover, T (λ ) is bounded from below in this case since it
is m-sectorial.

Next we show that on Φγ0 the spectral problems for A and T are equivalent.

PROPOSITION 4.4. Consider T as a function defined on Φγ0 . On Φγ0 the spec-
tra and point spectra of A and T coincide, i.e.

σp(A )∩Φγ0 = σ(A )∩Φγ0 = σ(T ) = σp(T ). (4.5)

For λ0 ∈ σp(A )∩Φγ0 the geometric multiplicities coincide:

dimker(A −λ0) = dimkerT (λ0). (4.6)

Moreover,
σess(T ) = /0.

If γ0 6= 0 , then there are at most finitely many eigenvalues of A (and, hence, of T ) in
Φγ0 \R .

Proof. First we show equality of the point spectra of A and T . For this, let λ ∈Φγ0
and assume that 0∈σp(T (λ )) . Then there exists x∈D(T (λ ))\{0} with λ 2x+λDx+
A0x = 0. Therefore

( x
λx
)
∈D(A ) and

(A −λ )
(

x
λx

)
= 0.

20



Conversely, if λ ∈ σp(A ) and if
( x

y
)
∈ D(A ) is a corresponding eigenvector, one

concludes that
y = λx and A0x+Dy+λy = 0. (4.7)

Hence x∈D(T (λ )) and T (λ )x= 0 with x 6= 0 because otherwise,
( x

y
)
= 0. Therefore

the point spectra of A and T coincide in Φγ0 . Moreover, as the first component of
an eigenvector

( x
λx
)
∈ D(A ) of A satisfies x ∈ D(T (λ )) and T (λ )x = 0 and vice

versa, the statement on the geometric multiplicities follows.
Next assume that λ ∈ ρ(A )∩Φγ0 . Then for g ∈ H there exists

( x
y
)
∈ D(A )

with

(A −λ )
(

x
y

)
=

(
0
g

)
.

From this one concludes that

y = λx and A0x+Dy+λy = g,

which shows that x ∈D(T (λ )) and T (λ )x = g . Hence T (λ ) is surjective and, by the
already proved statement about the eigenvalues, λ ∈ ρ(T ) . Proposition 3.5 implies that
σess(A )∩Φγ0 = /0 which, together with 0 ∈ ρ(A ) (see Proposition 3.3), gives the first
equality in (4.5). Hence each point λ in Φγ0 is either an eigenvalue of A and, hence,
of T , or belongs to the resolvent set of A and hence of T . This proves (4.5).

We show the statement about the essential spectrum of T . Let λ ∈ Φγ0 . The
statement is obvious for finite-dimensional H ; hence let H be infinite-dimensional. By
Lemma 4.2 there exist constants a,b such that a≥ 0, 0≤ b < 1 and

∣∣λd[x]
∣∣≤ a‖x‖2 +ba0[x], x ∈ H 1

2
.

Denote by L the spectral subspace for A0 corresponding to the interval
[
0, |λ |

2+a
1−b +1

]
.

Assume that 0 ∈ σess(T (λ )) . It follows from Proposition 3.5 and the definition of Φγ0

that λ /∈ σess(A ) and λ /∈ σess(A ) . Hence (4.6) implies that dimkerT (λ )< ∞ and

dim
(
ranT (λ )

)⊥
= dim

(
kerT (λ )∗

)
= dimkerT (λ )< ∞.

By [8, Theorem IX.1.3] there exists a singular sequence (xn)n∈N with xn ∈ D(T (λ )) ,
‖xn‖ = 1, xn ⇀ 0 (i.e. xn converges to 0 weakly) and T (λ )xn → 0 as n→ ∞ . We
decompose xn as follows:

xn = un + vn, un ∈ L, vn ⊥ L.

The projection onto L is weakly continuous and L is finite-dimensional by assumption
(F3); therefore the sequence (un)n∈N converges strongly in H to 0, A0un → 0 and
‖vn‖→ 1 as n→ ∞ . We obtain

∣∣〈T (λ )xn,xn〉
∣∣=
∣∣t(λ )[xn]

∣∣=
∣∣λ 2 +λd[xn]+a0[xn]

∣∣

≥ a0[xn]−
(
|λ 2|+ |λd[xn]|

)
≥ (1−b)a0[xn]− (|λ 2|+a)

= (1−b)
(
a0[un]+a0[vn]−

|λ |2 +a
1−b

)
.

21



As n→∞ , we have a0[un]→ 0, and a0[vn]≥
( |λ |2+a

1−b +1
)
‖vn‖2 holds for every n∈N .

Hence
liminf

n→∞

∣∣〈T (λ )xn,xn〉
∣∣≥ (1−b)> 0,

which is a contradiction. Therefore 0 /∈ σess(T (λ )) .
Finally, assume that γ0 > 0. Suppose that there are infinitely many eigenvalues

of A in Φγ0 \R . Since Φγ0 \R is a bounded set, there exists a sequence of non-real
eigenvalues of A which converges. However, this contradicts Proposition 3.5. Hence
the last statement is proved.

In the following we prove variational principles for real eigenvalues of A or, what
is equivalent (see Proposition 4.4), of T . To this end we introduce functionals p+ and
p− so that p+ serves as generalized Rayleigh functional for T on appropriate intervals.
For fixed x ∈ H 1

2
\{0} consider the equation

t(λ )[x] = λ 2‖x‖2 +λd[x]+a0[x] = 0 (4.8)

as an equation in λ .

DEFINITION 4.5. If (4.8) for x ∈H 1
2
\{0} does not have a real solution, then we

set
p+(x) :=−∞, p−(x) :=+∞.

Otherwise, we denote the solutions of (4.8) by p±(x) :

p±(x) :=
−d[x]±

√(
d[x]
)2−4‖x‖2a0[x]

2‖x‖2

=

−〈Dx,x〉H− 1
2
×H 1

2
±
√
〈Dx,x〉2H− 1

2
×H 1

2

−4‖x‖2‖A1/2
0 x‖2

2‖x‖2 .

(4.9)

Note that the values of p+(x) and p−(x) belong to (−∞,0)∪{±∞} . Set

D∗ :=
{

x ∈ H 1
2
\{0} | ∃λ ∈ R such that t(λ )[x] = 0

}

=
{

x ∈ H 1
2
\{0} | p±(x) are finite

}

=
{

x ∈ H 1
2
\{0} | d[x]≥ 2‖x‖

√
a0[x]

}
(4.10)

and define

α :=





max
{

sup
x∈D∗

p−(x),−
1
γ0

}
if γ0 > 0,

sup
x∈D∗

p−(x) if γ0 = 0,
(4.11)

where we set supx∈D∗ p−(x) =−∞ if D∗ = /0 .
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We collect some of the properties of p+ , p− and α in the following lemma. Note
that γ > 0 if and only if d 6= 0.

LEMMA 4.6. Assume that d 6= 0 . Then

p±(x)<−
1
γ

for x ∈D∗,

and hence
α ≤−1

γ
.

Proof. The assumption d 6= 0 implies that γ > 0. Let x ∈D∗ . It follows from (4.1)
that for λ ∈

[
− 1

γ ,∞
)
\{0} ,

t(λ )[x] = λ 2‖x‖2 +λd[x]+a0[x]

≥ λ 2‖x‖2− d[x]
γ

+a0[x]≥ λ 2‖x‖2 > 0.

Since t(0)[x] = a0[x] > 0, we therefore have t(λ )[x] > 0 for all λ ∈
[
− 1

γ ,∞
)

. This
implies that p±(x) < − 1

γ . The statement on α follows from this and the inequality
− 1

γ0
≤− 1

γ .

In the next proposition we discuss situations when the set D∗ is empty or non-
empty. Note that (i) in the following proposition contains a slight improvement of the
fifth assertion in [13, Theorem 3.2].

PROPOSITION 4.7. For the set D∗ we have the following implications.

(i) If
A−1/2

0 DA−1/2
0 < 2A−1/2

0 , (4.12)

where the inequality is understood as a relation between two self-adjoint op-
erators in the Hilbert space H ( i.e. 〈A−1/2

0 DA−1/2
0 x,x〉 < 2〈A−1/2

0 x,x〉 for all
x ∈ H \{0}) , then

D∗ = /0 and we have σp(A )∩R= /0.

(ii) If ∥∥A−1/2
0 DA−1/2

0

∥∥> 2
∥∥A−1/2

0

∥∥, (4.13)

where the norms are the operator norm in the Hilbert space H , then

D∗ 6= /0.
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Proof. (i) Let x ∈ H 1
2
\ {0} be arbitrary and set y := A1/2

0 x . From the assumption
(4.12) we obtain that

〈
A−1/2

0 DA−1/2
0 y,y

〉
< 2
〈
A−1/2

0 y,y
〉
≤ 2‖y‖

∥∥A−1/2
0 y

∥∥,

which implies

d[x] = 〈Dx,x〉H− 1
2
×H 1

2
< 2
∥∥A1/2

0 x
∥∥‖x‖= 2‖x‖

√
a0[x].

Together with (4.10) this shows that x /∈D∗ . Hence D∗= /0 . To prove the last statement
in (i), let λ be a real eigenvalue of A with corresponding eigenvector

( x
y
)
∈ D(A ) .

Then
A0x+λDx+λ 2x = 0,

by (4.7), which implies that t(λ )[x] = 0. The latter is not possible since D∗ = /0 .
(ii) The number ‖A−1/2

0 DA−1/2
0 ‖ is an element of the closure of the numerical

range of the self-adjoint operator A−1/2
0 DA−1/2

0 . Therefore, there exists a sequence
(yn) in H with ‖yn‖= 1 such that

〈
A−1/2

0 DA−1/2
0 yn,yn

〉
→
∥∥A−1/2

0 DA−1/2
0

∥∥ as n→ ∞.

Assumption (4.13) implies that 〈A−1/2
0 DA−1/2

0 yn0 ,yn0〉 > 2‖A−1/2
0 ‖ for some n0 ∈ N .

Set x := A−1/2
0 yn0 ; then

d[x] = 〈Dx,x〉H− 1
2
×H 1

2
=
〈
A−1/2

0 DA−1/2
0 yn0 ,yn0

〉
> 2
∥∥A−1/2

0

∥∥

≥ 2
∥∥A−1/2

0 yn0

∥∥= 2‖x‖
∥∥A1/2

0 x
∥∥= 2‖x‖

√
a0[x].

Now we obtain from (4.10) that x ∈D∗ ; hence D∗ 6= /0 .

The following theorem is one of the main results of this paper. Recall that an
eigenvalue is called semi-simple if the algebraic and geometric multiplicities coincide,
i.e. if there are no Jordan chains.

THEOREM 4.8. Assume that (F1)–(F3) are satisfied. Let ∆ be an interval with
∆⊂ (α,0] and max∆ = 0 . Then the set σ(A )∩∆ is either empty or consists only of a
finite or infinite sequence of isolated semi-simple eigenvalues of finite multiplicity of A .
The case of infinitely many eigenvalues in σ(A )∩∆ can occur only if α =− 1

γ0
= inf∆

and, in this case, the eigenvalues accumulate only at − 1
γ0

.
If σ(A )∩∆ is empty, then set N := 0 ; otherwise, denote the eigenvalues of A

in ∆ by (λ j)
N
j=1 , N ∈ N∪{∞} , in non-increasing order, counted according to their

multiplicities: λ1 ≥ λ2 ≥ ·· · . Then the nth eigenvalue λn , n ∈ N , n≤ N , satisfies

λn = max
L⊂H1/2
dimL=n

min
x∈L\{0}

p+(x) = min
L⊂H

dimL=n−1

sup
x∈H1/2\{0}

x⊥L

p+(x). (4.14)
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If N < ∞ , then

sup
L⊂D

dimL=n

min
x∈L\{0}

p+(x)≤ inf∆

inf
L⊂H

dimL=n−1

sup
x∈D\{0}

x⊥L

p+(x)≤ inf∆
for n > N with n≤ dimH. (4.15)

Proof. Except for the semi-simplicity, the first part of Theorem 4.8 follows from
Proposition 3.5. Let us next prove the second part, for which we apply Theorem 2.6.
To this end, we consider the operator function T defined on Ω := Φγ0 . Assumption (I)
in Section 2 is satisfied because of Proposition 4.3 and because T (0) = A0 is a positive
definite operator in H . Next we show that (↗) is satisfied. For x ∈ H 1

2
\ {0} , the

function λ 7→ t(λ )[x] is increasing at value zero on ∆ because it is convex and a zero
in (α,0] is the greater one of the two zeros of that function by the definition of α (note
that a double-zero cannot lie in (α,0]). Hence (↗) is satisfied. Moreover, p+ satisfies
(2.2) in both cases x ∈D∗ and x /∈D∗ by the definition of p+ . Therefore,

p(x) := p+(x), x ∈ H 1
2
,

is a generalized Rayleigh functional for T on ∆ , cf. Definition 2.1.
By Proposition 4.4 the eigenvalues and their geometric multiplicities of T and A

coincide in ∆ , and the interval ∆′ in Theorem 2.6 equals now ∆ . The quantity κ in
Theorem 2.6 is determined as

κ = dimL(−∞,0)
(
T (0)

)
= dimL(−∞,0)(A0) = 0.

Now the formulae in (4.14) and in (4.15) follow from (2.11), (2.12), Remark 2.7 and
Proposition 4.4.

Let us finally show that the eigenvalues of A in (α,0) are semi-simple. Assume
that λ ∈ (α,0) is an eigenvalue that has a Jordan chain, i.e. there exist vectors

( x0
y0

)
,( x1

y1

)
∈D(A ) , both being non-zero, such that

(A −λ )
(

x0
y0

)
= 0, (A −λ )

(
x1
y1

)
=

(
x0
y0

)
. (4.16)

It follows that y0 = λx0 and x0 6= 0. Moreover, we have x0 ∈D(T (λ )) and T (λ )x0 =
0, cf. (4.7). From the second equation in (4.16) it follows that

y1 = x0 +λx1 and A0x1 +Dy1 +λy1 =−λx0.

Substituting for y1 we obtain

−
(
λ 2 +λD+A0

)
x1 = (2λ +D)x0

and hence, by (4.3) and the symmetry of t(λ ) for real λ ,
〈
(2λ +D)x0,x0

〉
H− 1

2
×H 1

2

=−t(λ )[x1,x0] =−t(λ )[x0,x1]

=−
〈
T (λ )x0,x1

〉
H− 1

2
×H 1

2

= 0,
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where we used that x0 ∈ kerT (λ ) . The left-hand side of this equation is equal to
t′(λ )[x0] , which is positive because λ ∈ (α,0) and there is no double-zero of λ 7→
t(λ )[x0] in (α,0] . This is a contradiction and hence λ is semi-simple.

The next proposition provides a sufficient condition for the existence of eigenval-
ues in the interval

(
− 1

γ0
,0
)

.

PROPOSITION 4.9. Assume that (F1)–(F3) are satisfied and that γ0 > 0 . If

σ
(

A−1/2
0 DA−1/2

0 − 1
γ0

A−1
0

)
∩ (γ0,∞) 6= /0, (4.17)

then
σ(A )∩

(
− 1

γ0
,0
)
6= /0. (4.18)

Proof. Define the following operator function

R(λ ) := A−1/2
0 DA−1/2

0 +λA−1
0 +

1
λ

I, λ ∈ R\{0},

whose values are bounded operators in H . Assumption (4.17) implies that

maxσ
(

R
(
− 1

γ0

))
= maxσ

(
A−1/2

0 DA−1/2
0 − 1

γ0
A−1

0 − γ0I
)
> 0.

On the other hand, for λ < 0,

maxσ
(
R(λ )

)
≤ γ +

1
λ
→−∞ as λ → 0− .

Since maxσ(R(λ )) is continuous in λ (see, e.g. [15, Theorem V.4.10]), there exists a
λ0 ∈

(
− 1

γ0
,0
)

such that maxσ(R(λ0)) = 0. The compactness of A−1
0 implies that

maxσess
(
R(λ0)

)
= γ0 +

1
λ0

< 0.

Hence 0 ∈ σp(R(λ0)) , i.e. there exists a y ∈ H \{0} such that

A−1/2
0 DA−1/2

0 y+λ0A−1
0 y+

1
λ0

y = 0.

Applying A1/2
0 to both sides, multiplying by λ0 and setting x := A−1/2

0 y we obtain that

λ 2
0 x+λ0Dx+A0x = 0.

This, together with (4.5), implies (4.18).
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The converse of Proposition 4.9 is not true, i.e. (4.18) does not imply (4.17). This
can be seen from the following example. Let H = `2 and define the operators A0 and
D by

(A0x)n = nxn, (Dx)n =





2x1, n = 1,
n
2

xn, n≥ 2,

where x = (xn)
∞
n=1 . Then γ0 =

1
2 ,

σ
(

A−1/2
0 DA−1/2

0 − 1
γ0

A−1
0

)
=
{

0,
1
2

}
∪
{1

2
− 2

n
| n ∈ N,n≥ 2

}
,

which is disjoint from (γ0,∞) . However, −1 is an eigenvalue of T with eigenvector
(1,0,0, . . .) .

With the help of the form t(λ ) it is shown in the following proposition that a
certain triangle belongs to the resolvent set of A ; see Figure 1. This complements [14,
Theorem 3.2], where it was shown that the open disc around zero with radius

r =
2

γ +
√

γ2 +4‖A−1
0 ‖

,

belongs to ρ(A ) ; note that r < 1
γ .

-
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Figure 1: The region on the left-hand side of (4.19), which is contained in ρ(A ) ; the
three circles indicate the numbers − 1

γ , − 1
γ ± i

γ , which, in general, do not belong to
ρ(A ) .

PROPOSITION 4.10. Assume that d 6= 0 . Then
{

z ∈ C
∣∣∣∣ z = 0 or − 1

γ
≤ Rez < 0, argz ∈

[
3π
4
,

5π
4

]}∖{
−1

γ
,−1

γ
± i

γ

}
⊂ ρ(A )

(4.19)
where γ is defined in (3.16). If, in addition, γ 6= γ0 , then also − 1

γ ∈ ρ(A ) .
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Proof. Since d 6= 0, we have D 6= 0 and γ > 0, see (3.16). Let λ be either in the set
on the left-hand side of (4.19) or let λ =− 1

γ and assume that γ 6= γ0 in the latter case.
Suppose that λ ∈ σ(A ) . By Proposition 3.5 the set on the left-hand side of (4.19) is
disjoint from σess(A ) , and − 1

γ /∈ σess(A ) if γ 6= γ0 . Hence λ is an eigenvalue of A .
By (4.7) there exists an x ∈H 1

2
\{0} such that t(λ )[x] = 0. We have Re(λ )≥− 1

γ and

Re(λ 2)≥ 0, where at least one of the two inequalities is strict. Using (4.1) we therefore
obtain

0 = Re
(
t(λ )[x]

)
= Re(λ 2)‖x‖2 +(Reλ )d[x]+a0[x]

≥ Re(λ 2)‖x‖2 +(Reλ )γ a0[x]+a0[x]

>−1
γ
· γ a0[x]+a0[x] = 0,

which is a contradiction. Hence λ ∈ ρ(A ) .

One can easily construct examples with eigenvalues λ of A satisfying argλ ∈(π
2 ,

3π
4

)
and | Re λ | < 1

γ . For example, let A0 be a positive definite operator with
compact resolvent and smallest eigenvalue 1/2. For the choice D = A0 , we have γ = 1
and λ0 =− 1

4 + i
√

7
4 is an eigenvalue of A which satisfies Reλ0 =−1/4 >− 1

γ =−1
and argλ0 ∈

(π
2 ,

3π
4

)
.

Another application of Theorem 4.8 results in interlacing properties of eigenvalues
of two different second-order problems with coefficients that satisfy a specific order
relation. This is the content of the following theorem.

THEOREM 4.11. Let the forms a0 , â0 , d and d̂ in the Hilbert space H be given
so that a0 , d and â0 , d̂ , respectively, satisfy assumptions (F1)–(F3). Assume that
D(a0) = D(â0) and

a0[x]≥ â0[x], d[x]≤ d̂[x] for x ∈D(a0). (4.20)

Let ˆA , δ̂ , γ̂ , δ̂0 , γ̂0 , t̂ , p̂± , and α̂ be defined as in (3.10)–(3.11), (3.16), (3.17),
(3.18), (4.3), and (4.9)–(4.11), respectively, where a0 is replaced by â0 and d by d̂ .
Then we have

γ ≤ γ̂, γ0 ≤ γ̂0, δ ≤ δ̂ , δ0 ≤ δ̂0. (4.21)

Let
∆ := (a,0] with a≥max{α, α̂}.

Assume now that σ(A )∩ ∆ is non-empty; then also σ( ˆA )∩ ∆ is non-empty. Let
(λn)

N
n=1 and (λ̂n)

N̂
n=1 , N, N̂ ∈ N∪{∞} , be the eigenvalues of A and ˆA , respectively,

in the interval ∆ , both arranged in non-increasing order and counted according their
multiplicities. Then N ≤ N̂ and

λn ≤ λ̂n for n ∈ N, n≤ N. (4.22)
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Proof. The inequalities in (4.21) follow from (4.20), (3.20), (3.21), (3.22) and
(3.17), e.g.

γ = sup
y∈H1/2\{0}

d[y]
a0[y]

≤ sup
y∈H1/2\{0}

d̂[y]
â0[y]

= γ̂.

The relations in (4.20) imply that

t(λ )[x]≥ t̂(λ )[x], x ∈ H 1
2
, λ ∈ (−∞,0].

It follows from (2.4) that p+(x)≤ p̂+(x) for x ∈ H 1
2
\{0} and hence

µn := sup
L⊂H1/2
dimL=n

min
x∈L\{0}

p+(x)≤ sup
L⊂H1/2
dimL=n

min
x∈L\{0}

p̂+(x) =: µ̂n. (4.23)

Assume that A has at least m eigenvalues in ∆ . Then, by Theorem 4.8, λm = µm >
a . If ˆA had less than m− 1 eigenvalues in ∆ , then µ̂m ≤ a by (4.15), which is a
contradiction to (4.23). Hence the implication σ(A )∩∆ 6= /0 ⇒ σ( ˆA )∩∆ 6= /0 and
the inequality N ≤ N̂ are true. Finally, the inequality in (4.22) follows from (4.14) and
(4.23).

5. Example: beam with damping

We consider a beam of length 1 and study transverse vibrations only. Let u(r, t)
denote the deflection of the beam from its rigid body motion at time t and position
r . We consider for the beam deflection a damping model which leads to the following
description of the vibrations where a0 > 0 is a real constant and d ∈ C1[0,1] with
minr∈[0,1] d(r)> 0:

∂ 2u
∂ t2 +a0

∂ 4u
∂ r4 +

∂ 2

∂ t∂ r

[
d

∂u
∂ r

]
= 0, r ∈ (0,1), t > 0. (5.1)

Assuming that the beam is pinned, free to rotate and does not experience any torque at
both ends, we have for all t > 0 the following boundary conditions

u
∣∣
r=0 = u

∣∣
r=1 =

∂ 2u
∂ r2

∣∣∣∣
r=0

=
∂ 2u
∂ r2

∣∣∣∣
r=1

= 0. (5.2)

We consider the partial differential equation (5.1)–(5.2) as a second-order problem in
the Hilbert space H = L2(0,1) . In order to formulate this beam equation as in (3.1), we
introduce the forms a0 and d defined for x,y from the form domains D(a0) =D(d) =
H2(0,1)∩H1

0 (0,1) as

a0[x,y] := a0

∫ 1

0
x′′(r)y′′(r)dr and d[x,y] :=

∫ 1

0
d(r)x′(r)y′(r)dr.

Then (5.1)–(5.2) corresponds to

〈ü(t),y〉+a0[u(t),y]+d[u̇(t),y] = 0 for all y ∈D(a0) = D(d).
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Set
dmin := min

r∈[0,1]
d(r), dmax := max

r∈[0,1]
d(r).

For x ∈D(a0) we have

a0[x] = a0〈x′′,x′′〉 ≥ a0π4‖x‖2,

which shows (F1). Using again ‖x′′‖ ≥ π2‖x‖ we obtain for x ∈D(a0) that

a0[x] = a0‖x′′‖2 ≥ a0π2‖x′′‖‖x‖ ≥ a0π2
∣∣∣∣
∫ 1

0
x′′(r)x(r)dr

∣∣∣∣

= a0π2
∫ 1

0

∣∣x′(r)
∣∣2dr ≥ a0π2

dmax

∫ 1

0
d(r)

∣∣x′(r)
∣∣2dr =

a0π2

dmax
d[x].

Thus (F2) holds. In order to show (F3) we introduce the operator A0 associated with
a0 via the the First Representation Theorem [15, Theorem VI.2.1] as in (3.2). It is easy
to see that A0 has the form

A0 = a0
d4

dr4 , D(A0) =
{

z ∈ H 1
2
| z′′ ∈D(a0)

}
.

Obviously, A0 satisfies assumption (F3). We define the Hilbert space H 1
2

as in (3.3);
then H 1

2
= D(a0) = D(d) . Moreover, we define the damping operator as

D :=− d
dr

[
d

d
dr

]
.

Due to the fact that d ∈C1[0,1] , D is a linear bounded operator from H 1
2

to H . For
x ∈ H 1

2
we have

〈Dx,x〉= 〈dx′,x′〉= d[x].

Since DA−1/2
0 is a bounded operator in H and A−1/2

0 is a compact operator in H , we
see that A−1/2

0 DA−1/2
0 is a compact operator in H . From this we obtain

σess
(
A−1/2

0 DA−1/2
0

)
= {0}

and hence γ0 = δ0 = 0. This, together with Proposition 3.5, yields

σess(A ) = /0. (5.3)

Finally, we apply the results of this paper to the damped beam equation.

THEOREM 5.1. Assume that

d2
min ≥ 4a0. (5.4)
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Then D∗ 6= /0 (cf. (4.10)) and the number α from (4.11) satisfies α ≤−dmin
π2

2 . The
set

σ(A )∩
(
−dminπ2

2
,0
)

is non-empty and consists only of a finite sequence of isolated semi-simple eigenvalues
of finite multiplicity of A counted according to their multiplicities: λ1 ≥ λ2 ≥ . . .≥ λN
for some N ∈ N . The nth eigenvalue λn , 1 ≤ n ≤ N , satisfies (4.14) in Theorem 4.8
and the following inequalities:

λn ≤
−dmax +

√
d2

max−4a0

2
·π2n2, 1≤ n≤ N, (5.5)

and

λn ≥
−dmin +

√
d2

min−4a0

2
·π2n2, n ∈ N such that n2 ≤ 1

1−
√

1− 4a0
d2

min

. (5.6)

Note that the inequality in (5.6) for λn holds at least for n = 1.

Proof. We introduce the forms dmin and dmax by

dmin/max[x,y] := dmin/max

∫ 1

0
x′(r)y′(r)dr, x,y ∈ H 1

2
,

the form polynomials tmin and tmax by

tmin/max(λ )[x,y] := λ 2〈x,y〉+λdmin/max[x,y]+a0[x,y], x,y ∈ H 1
2
,

and the corresponding operator functions Tmin and Tmax as in Proposition 4.3. Let
S := − d2

dr2 in L2(0,1) with domain D(S) = H2(0,1)∩H1
0 (0,1) , which has spectrum

σ(S) = {n2π2 | n ∈ N} . Since we can write

Tmin/max(λ ) = λ 2 +λdmin/maxS+a0S2,

we can use the spectral mapping theorem to obtain

σ(Tmin) =
{

λ ∈ C | λ 2 +λdminn2π2 +a0n4π4 = 0 for some n ∈ N
}

=

{−dmin±
√

d2
min−4a0

2
·n2π2

∣∣∣∣ n ∈ N

}
⊂ (−∞,0). (5.7)

In a similar way one obtains a description of σ(Tmax) .
Define p± , p(min)

± , p(max)
± , D∗ , D∗min , D∗max , α , αmin , αmax as in Definition 4.5

corresponding to T , Tmin and Tmax , respectively. Denote by e1 the eigenvector to the
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smallest eigenvalue, π2 , of S with ‖e1‖= 1, i.e. e1 =
√

2sin(π ·) and Se1 = π2e1 . It
follows from (5.4) that

d[e1]−2‖e1‖
√
a0[e1]≥ dmin[e1]−2

√
a0[e1]

= dmin〈Se1,e1〉−2
√

a0‖Se1‖= dminπ2−2
√

a0π2 ≥ 0,

which by (4.10) implies that D∗ 6= /0 . Since γ0 = 0, we have

α = sup
x∈D∗

p−(x) = sup
x∈D∗

−d[x]−
√(

d[x]
)2−4‖x‖2a0[x]

2‖x‖2

≤ sup
x∈D∗

−d[x]
2‖x‖2 ≤ sup

x∈H1/2

−dmin[x]
2‖x‖2 =− inf

x∈H1/2

dmin‖x′‖2

2‖x‖2 =−dminπ2

2
.

In the same way one obtains that αmin,αmax ≤− dminπ2

2 .

Set ∆ :=
(
− dminπ2

2 ,0
]

and let (λ (min)
n )Nmin

n=1 and (λ (max)
n )Nmax

n=1 be the eigenvalues
of Tmin and Tmax , respectively, in the interval ∆ ordered non-increasingly and counted
with multiplicities. We can apply Theorem 4.11 to the pairs Tmin , T and T , Tmax ,
which implies that Nmin ≤ N ≤ Nmax and

λ (min)
n ≤ λn, 1≤ n≤ Nmin,

λn ≤ λ (max)
n , 1≤ n≤ N.

(5.8)

It follows from (5.7) that

λ (min)
n =

−dmin +
√

d2
min−4a0

2
·n2π2, λ (max)

n =
−dmax +

√
d2

max−4a0

2
·n2π2.

Moreover, Nmin is the largest positive integer such that

−dmin +
√

d2
min−4a0

2
·N2

minπ2 ≥−dminπ2

2
,

where the latter inequality is equivalent to

N2
min ≤

dmin

dmin−
√

d2
min−4a0

=
1

1−
√

1− 4a0
d2

min

. (5.9)

Now the inequalities in (5.8) imply (5.5) and (5.6). Since the right-hand side of (5.9) is
greater than or equal to 1, we have N ≥ Nmin ≥ 1. Hence σ(A )∩∆ 6= /0 . Moreover,
N is finite because σess(A ) = /0 .
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