5 research outputs found

    A critical comparison of integral projection and matrix projection models for demographic analysis

    Get PDF
    Structured demographic models are among the most common and useful tools in population biology. However, the introduction of integral projection models (IPMs) has caused a profound shift in the way many demographic models are conceptualized. Some researchers have argued that IPMs, by explicitly representing demographic processes as continuous functions of state variables such as size, are more statistically efficient, biologically realistic, and accurate than classic matrix projection models, calling into question the usefulness of the many studies based on matrix models. Here, we evaluate how IPMs and matrix models differ, as well as the extent to which these differences matter for estimation of key model outputs, including population growth rates, sensitivity patterns, and life spans. First, we detail the steps in constructing and using each type of model. Second, we present a review of published demographic models, concentrating on size-based studies, which shows significant overlap in the way IPMs and matrix models are constructed and analyzed. Third, to assess the impact of various modeling decisions on demographic predictions, we ran a series of simulations based on size-based demographic data sets for five biologically diverse species. We found little evidence that discrete vital rate estimation is less accurate than continuous functions across a wide range of sample sizes or size classes (equivalently bin numbers or mesh points). Most model outputs quickly converged with modest class numbers (≥10), regardless of most other modeling decisions. Another surprising result was that the most commonly used method to discretize growth rates for IPM analyses can introduce substantial error into model outputs. Finally, we show that empirical sample sizes generally matter more than modeling approach for the accuracy of demographic outputs. Based on these results, we provide specific recommendations to those constructing and evaluating structured population models. Both our literature review and simulations question the treatment of IPMs as a clearly distinct modeling approach or one that is inherently more accurate than classic matrix models. Importantly, this suggests that matrix models, representing the vast majority of past demographic analyses available for comparative and conservation work, continue to be useful and important sources of demographic information.Support for this work was provided by NSF awards 1146489, 1242558, 1242355, 1353781, 1340024, 1753980, and 1753954, 1144807, 0841423, and 1144083. Support also came from USDA NIFA Postdoctoral Fellowship (award no. 2019-67012-29726/project accession no. 1019364) for R. K. Shriver; the Swiss Polar Institute of Food and Agriculture for N. I. Chardon; the ICREA under the ICREA Academia Programme for C. Linares; and SERDP contract RC-2512 and USDA National Institute of Food and Agriculture, Hatch project 1016746 for A .M. Louthan. This is Contribution no. 21-177-J from the Kansas Agricultural Experiment Station

    Empirically Classifying Network Mechanisms

    Get PDF
    Network models are used to study interconnected systems across many physical, biological, and social disciplines. Such models often assume a particular network-generating mechanism, which when fit to data produces estimates of mechanism-specific parameters that describe how systems function. For instance, a social network model might assume new individuals connect to others with probability proportional to their number of pre-existing connections ('preferential attachment'), and then estimate the disparity in interactions between famous and obscure individuals with similar qualifications. However, without a means of testing the relevance of the assumed mechanism, conclusions from such models could be misleading. Here we introduce a simple empirical approach which can mechanistically classify arbitrary network data. Our approach compares empirical networks to model networks from a user-provided candidate set of mechanisms, and classifies each network--with high accuracy--as originating from either one of the mechanisms or none of them. We tested 373 empirical networks against five of the most widely studied network mechanisms and found that most (228) were unlike any of these mechanisms. This raises the possibility that some empirical networks arise from mixtures of mechanisms. We show that mixtures are often unidentifiable because different mixtures can produce functionally equivalent networks. In such systems, which are governed by multiple mechanisms, our approach can still accurately predict out-of-sample functional properties.Comment: 5 pages, 2 figures, 2 ancillary file

    Multidecadal dynamics project slow 21st-century economic growth and income convergence

    No full text
    Abstract Future economic growth will affect societal well-being and the environment, but is uncertain. We describe a multidecadal pattern of gross domestic product (GDP) per capita growth rising, then declining, as regions become richer. An empirically fitted differential-equation model and an integrated assessment model—International Futures—accounting for this pattern both predict 21st-century economic outlooks with slow growth and income convergence compared to the Shared Socioeconomic Pathways, similar to SSP4 (“Inequality”). For World Bank income groups, the differential-equation model could have produced, from 1980, consistent projections of 2100 GDP per capita, and more accurate predictions of 2010s growth rates than the International Monetary Fund’s short-term forecasts. Both forecasts were positively biased for the low-income group. SSP4 might therefore represent a best-case—not worst-case—scenario for 21st-century economic growth and income convergence. International Futures projects high poverty and population growth, and moderate energy demands and carbon dioxide emissions, within the Shared Socioeconomic Pathway range

    CIEE-Living-Data-Project/predicting_species_abundance: predicting_species_abundance

    No full text
    <p>Making data and code available for initial journal submission and peer review</p&gt
    corecore