3,440 research outputs found

    Electronic ground states of Fe2+_2^+ and Co2+_2^+ as determined by x-ray absorption and x-ray magnetic circular dichroism spectroscopy

    Full text link
    The 6Π^6\Pi electronic ground state of the Co2+_2^+ diatomic molecular cation has been assigned experimentally by x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap. Three candidates, 6Φ^6\Phi, 8Φ^8\Phi, and 8Γ^8\Gamma, for the electronic ground state of Fe2+_2^+ have been identified. These states carry sizable orbital angular momenta that disagree with theoretical predictions from multireference configuration interaction and density functional theory. Our results show that the ground states of neutral and cationic diatomic molecules of 3d3d transition elements cannot generally be assumed to be connected by a one-electron process

    Coordination-driven magnetic-to-nonmagnetic transition in manganese doped silicon clusters

    Full text link
    The interaction of a single manganese impurity with silicon is analyzed in a combined experimental and theoretical study of the electronic, magnetic, and structural properties of manganese-doped silicon clusters. The structural transition from exohedral to endohedral doping coincides with a quenching of high-spin states. For all geometric structures investigated, we find a similar dependence of the magnetic moment on the manganese coordination number and nearest neighbor distance. This observation can be generalized to manganese point defects in bulk silicon, whose magnetic moments fall within the observed magnetic-to-nonmagnetic transition, and which therefore react very sensitively to changes in the local geometry. The results indicate that high spin states in manganese-doped silicon could be stabilized by an appropriate lattice expansion

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program 'iTHER'

    Full text link
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival. Keywords: Adolescent; Cancer; Child; Hereditary; Molecular biology; Molecular targeted therapy; Next-generation sequencing; Precision medicin

    Chemical shifts and cluster structure

    Get PDF
    The 2p core-level electron binding energies of size-selected silicon cluster ions have been determined from soft x-ray photoionization efficiency curves. Local chemical shifts and global charging energy contributions to the 2p binding energy can be separated, because core-level and valence-band electron binding energies exhibit the same inverse radius dependence. The experimental 2p binding energy distributions show characteristic size-specific patterns that are well reproduced by the corresponding electronic density of states obtained from density functional theory modeling. These results demonstrate that 2p binding energies in silicon clusters are dominated by initial state effects, i.e., by the interaction with the local valence electron density, and can thus be used to corroborate structural assignments

    Spin-phonon coupling in epitaxial Sr0.6Ba0.4MnO3 thin films

    Get PDF
    Spin-phonon coupling is investigated in epitaxially strained Sr1-xBaxMnO3 thin films with perovskite structure by means of microwave (MW) and infrared (IR) spectroscopy. In this work we focus on the Sr0.6Ba0.4MnO3 composition grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 substrate. The MW complex electromagnetic response shows a decrease in the real part and a clear anomaly in the imaginary part around 150 K. Moreover, it coincides with a 17% hardening of the lowest-frequency polar phonon seen in IR reflectance spectra. In order to further elucidate this phenomenon, low-energy muon-spin spectroscopy was carried out, signaling the emergence of antiferromagnetic order with Néel temperature (TN) around 150 K. Thus, our results confirm that epitaxial Sr0.6Ba0.4MnO3 thin films display strong spin-phonon coupling below TN, which may stimulate further research on tuning the magnetoelectric coupling by controlling the epitaxial strain and chemical pressure in the Sr1-xBaxMnO3 system

    Optimization of Ultrasonic Defect Reconstruction with Multi-Saft

    Get PDF
    Ultrasonic nondestructive inspection (NDI) is widely applied in order to evaluate the structural integrity of steel components. The main reason for this success is that ultrasonic NDI is an excellent means for detecting inhomogeneities. Ultrasonic characterization of inhomogeneities, however, is less successful, as ultrasonic measurements do not directly provide the information, such as size and shape, needed to apply the rules of fracture mechanics. Although the location and orientation of an inhomogeneity may sometimes be estimated quite accurately from ultrasonic measurements, its size and shape are often very hard to determine. Cross-sectional images of the region containing the inhomogeneity would be particularly suitable for extracting these characteristic features. It is possible to reconstruct an image of a possible defect from ultrasonic B-scan data using the well-known Synthetic Aperture Focusing Technique (SAFT) [1]

    Spin and orbital magnetic moments of size-selected iron, cobalt, and nickel clusters and their link to the bulk phase diagrams

    Full text link
    Spin and orbital magnetic moments of cationic iron, cobalt, and nickel clusters have been determined from x-ray magnetic circular dichroism spectroscopy. In the size regime of n=10−15n = 10 - 15 atoms, these clusters show strong ferromagnetism with maximized spin magnetic moments of 1~μB\mu_B per empty 3d3d state because of completely filled 3d3d majority spin bands. The only exception is Fe13+\mathrm{Fe}_{13}^+ where an unusually low average spin magnetic moment of 0.73±0.120.73 \pm 0.12~μB\mu_B per unoccupied 3d3d state is detected; an effect, which is neither observed for Co13+\mathrm{Co}_{13}^+ nor Ni13+\mathrm{Ni}_{13}^+.\@ This distinct behavior can be linked to the existence and accessibility of antiferromagnetic, paramagnetic, or nonmagnetic phases in the respective bulk phase diagrams of iron, cobalt, and nickel. Compared to the experimental data, available density functional theory calculations generally seem to underestimate the spin magnetic moments significantly. In all clusters investigated, the orbital magnetic moment is quenched to 5−255 - 25\,\% of the atomic value by the reduced symmetry of the crystal field. The magnetic anisotropy energy is well below 65 μ\mueV per atom
    • …
    corecore