94 research outputs found

    An approximation scheme for reflected stochastic differential equations

    Get PDF
    AbstractIn this paper, we consider the Stratonovich reflected SDE dXt=σ(Xt)∘dWt+b(Xt)dt+dLt in a bounded domain O. Letting WtN be the N-dyadic piecewise linear interpolation of Wt, we show that the distribution of the solution (XtN,LtN) to the reflected ODE ẊtN=σ(XtN)ẆtN+b(XtN)+L̇tN converges weakly to that of (Xt,Lt). Hence, we prove a distributional version for reflected diffusions of the famous result of Wong and Zakai.In particular, we apply our result to derive some geometric properties of coupled reflected Brownian motion, especially those properties which have been used in the recent work on the “hot spots” conjecture for special domains

    Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Diagnostic Task Force Criteria Impact of New Task Force Criteria

    Get PDF
    Background-Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C) Diagnostic Task Force Criteria (TFC) proposed in 1994 are highly specific but lack sensitivity. A new international task force modified criteria to improve diagnostic yield. A comparison of diagnosis by 1994 TFC versus newly proposed criteria in 3 patient groups was conducted. Methods and Results-In new TFC, scoring by major and minor criteria is maintained. Structural abnormalities are quantified and TFC highly specific for ARVD/C upgraded to major. Furthermore, new criteria are added: terminal activation duration of QRS ≥55 ms, ventricular tachycardia with left bundle-branch block morphology and superior axis, and genetic criteria. Three groups were studied: (1) 105 patients with proven ARVD/C according to 1994 TFC, (2) 89 of their family members, and (3) 39 patients with probable ARVD/C (ie, 3 points by 1994 TFC). All were screened for pathogenic mutations in desmosomal genes. Three ARVD/C patients did not meet the new sharpened criteria on structural abnormalities and thereby did not fulfill new TFC. In 62 of 105 patients with proven ARVD/C, mutations were found: 58 in the gene encoding Plakophilin2 (PKP2), 3 in Desmoglein2, 3 in Desmocollin2, and 1 in Desmoplakin. Three patients had bigenic involvement. Ten additional relatives (11%) fulfilled new TFC: 9 (90%) were female, and all carried PKP2 mutations. No rel

    Expanding the clinical and genetic spectrum of ALPK3 variants: Phenotypes identified in pediatric cardiomyopathy patients and adults with heterozygous variants

    Get PDF
    Introduction: Biallelic damaging variants in ALPK3, encoding alpha-protein kinase 3, cause pediatric-onset cardiomyopathy with manifestations that are incompletely defined. Methods and Results: We analyzed clinical manifestations of damaging biallelic ALPK3 variants in 19 pediatric patients, including nine previously published cases. Among these, 11 loss-of-function (LoF) variants, seven compound LoF and deleterious missense variants, and one homozygous deleterious missense variant were identified. Among 18 live-born patients, 8 exhibited neonatal dilated cardiomyopathy (44.4%; 95% CI: 21.5%-69.2%) that subsequently transitioned into ventricular hypertrophy. The majority of patients had extracardiac phenotypes, including contractures, scoliosis, cleft palate, and facial dysmorphisms. We observed no association between variant type or location, disease severity, and/or extracardiac manifestations. Myocardial histopathology showed focal cardiomyocyte hypertrophy, subendocardial fibroelastosis in patients under 4 years of age, and myofibrillar disarray in adults. Rare heterozygous ALPK3 variants were also assessed in adult-onset cardiomyopathy patients. Among 1548 Dutch patients referred for initial genetic analyses, we identified 39 individuals with rare heterozygous ALPK3 variants (2.5%; 95% CI: 1.8%-3.4%), including 26 missense and 10 LoF variants. Among 149 U.S. patients without pathogenic variants in 83 cardiomyopathy-related genes, we identified six missense and nine LoF ALPK3 variants (10.1%; 95% CI: 5.7%-16.1%). LoF ALPK3 variants were increased in comparison to matched controls (Dutch cohort, P = 1.6×10−5; U.S. cohort, P = 2.2×10−13). Conclusion: Biallelic damaging ALPK3 variants cause pediatric cardiomyopathy manifested by DCM transitioning to hypertrophy, often with poor contractile function. Additional extracardiac features occur in most patients, including musculoskeletal abnormalities and cleft palate. Heterozygous LoF ALPK3 variants are enriched in adults with cardiomyopathy and may contribute to their cardiomyopathy. Adults with ALPK3 LoF variants therefore warrant evaluations for cardiomyopathy

    Expanding the clinical and genetic spectrum of ALPK3 variants: phenotypes identified in pediatric cardiomyopathy patients and adults with heterozygous variants

    Get PDF
    Introduction Biallelic damaging variants in ALPK3, encoding alpha-protein kinase 3, cause pediatric-onset cardiomyopathy with manifestations that are incompletely defined.Methods and Results We analyzed clinical manifestations of damaging biallelic ALPK3 variants in 19 pediatric patients, including nine previously published cases. Among these, 11 loss-of-function (LoF) variants, seven compound LoF and deleterious missense variants, and one homozygous deleterious missense variant were identified. Among 18 live-born patients, 8 exhibited neonatal dilated cardiomyopathy (44.4%; 95% CI: 21.5%-69.2%) that subsequently transitioned into ventricular hypertrophy. The majority of patients had extracardiac phenotypes, including contractures, scoliosis, cleft palate, and facial dysmorphisms. We observed no association between variant type or location, disease severity, and/or extracardiac manifestations. Myocardial histopathology showed focal cardiomyocyte hypertrophy, subendocardial fibroelastosis in patients under 4 years of age, and myofibrillar disarray in adults.Rare heterozygous ALPK3 variants were also assessed in adult-onset cardiomyopathy patients. Among 1548 Dutch patients referred for initial genetic analyses, we identified 39 individuals with rare heterozygous ALPK3 variants (2.5%; 95% CI: 1.8%3.4%), including 26 missense and 10 LoF variants. Among 149 U.S. patients without pathogenic variants in 83 cardiomyopathy-related genes, we identified six missense and nine LoF ALPK3 variants (10.1%; 95% CI: 5.7%-1 6.1%). LoF ALPK3 variants were increased in comparison to matched controls (Dutch cohort, P = 1.6x10(-5); U.S. cohort, P = 2.2x10(-13)).Conclusion Biallelic damaging ALPK3 variants cause pediatric cardiomyopathy manifested by DCM transitioning to hypertrophy, often with poor contractile function. Additional extracardiac features occur in most patients, including musculoskeletal abnormalities and cleft palate. Heterozygous LoF ALPK3 variants are enriched in adults with cardiomyopathy and may contribute to their cardiomyopathy. Adults with ALPK3 LoF variants therefore warrant evaluations for cardiomyopathy.Genetics of disease, diagnosis and treatmen
    corecore