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Abstract

In this paper, we consider the Stratonovich reflected SDE dX t = σ(X t ) ◦ dWt + b(X t )dt + dL t in a
bounded domain O. Letting W N

t be the N -dyadic piecewise linear interpolation of Wt , we show that the
distribution of the solution (X N

t , L N
t ) to the reflected ODE Ẋ N

t = σ(X N
t )Ẇ

N
t + b(X N

t )+ L̇ N
t converges

weakly to that of (X t , L t ). Hence, we prove a distributional version for reflected diffusions of the famous
result of Wong and Zakai.

In particular, we apply our result to derive some geometric properties of coupled reflected Brownian
motion, especially those properties which have been used in the recent work on the “hot spots” conjecture
for special domains.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Motivation

As is well known, Itô stochastic differential equations can be very misleading from a
geometric standpoint. The classic example of this observation is the Itô stochastic differential

∗ Corresponding address: Department of Mathematics, University of Missouri, Columbia, MO 65211, United States.
E-mail addresses: evanslc@missouri.edu (L.C. Evans), dws@math.mit.edu (D.W. Stroock).

0304-4149/$ - see front matter c⃝ 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.spa.2011.03.005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82375709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.spa.2011.03.005
http://www.elsevier.com/locate/spa
mailto:evanslc@missouri.edu
mailto:dws@math.mit.edu
http://dx.doi.org/10.1016/j.spa.2011.03.005


L.C. Evans, D.W. Stroock / Stochastic Processes and their Applications 121 (2011) 1464–1491 1465

equation (SDE)

dX (t) = σ(X (t))dWt with X (0) =


1
0


and σ =


−x2
x1


,

where Wt is a 1-dimensional Brownian motion. If one makes the mistake of thinking that Itô dif-
ferentials of Brownian motion behave like classical differentials, then one would predict that X (t)
should live on the unit circle. On the other hand, Itô’s formula, which is a quantitative statement of
the extent to which they do not behave like classical differentials, says that d|X (t)|2 = |X (t)|2dt ,
and so |X (t)|2 = et .

To avoid the sort of misinterpretation to which Itô SDE’s lead, it is convenient to replace Itô
SDE’s by their Stratonovich counterparts. When one does so, then the Wong–Zakai theorem [16]
shows that the solution to the SDE can be approximated by solutions to the ordinary differential
equation (ODE) which one obtains by piecewise linearizing the Brownian paths. In this way,
one can transfer to solutions of the SDE geometric properties which one knows for the solutions
to the ODE’s. The purpose of this paper is to carry out the analogous program for SDE’s for
diffusions which are reflected at the boundary of some region. This is not the first time that such
a program has been attempted. For example, R. Petterson proved in [7] a result of this sort under
the assumption that the domain is convex. Unfortunately, convexity is too rigid a requirement
for applications of the sort which appear in papers like [2] by Banuelos and Burdzy, and so
it is important to replace convexity by a more general condition, like the one given in [6] by
Sznitman and Lions. Finally, it should be mentioned that the article [5] by Kohatsu-Higa contains
a very general, highly abstract approximation procedure which may be applicable to the situation
here.

1.2. Background for reflected SDE’s

We begin by recalling the (deterministic) Skorohod problem.
Let O ⊂ Rd be a domain and to each x ∈ ∂O assign a nonempty collection ν(x) ⊆ Sd−1, to

be thought of as the set of directions in which a path can be “pushed” when it hits x . Given a con-
tinuous path w : [0,∞) → Rd with w0 ∈ Ō, known as the “input”, we say that a solution to the
Skorohod problem for (O, ν(x)) is a pair (x·, ℓ·) consisting of a continuous path t ∈ [0,∞) −→

xt ∈ Ō and a continuous function of locally bounded variation t ∈ [0,∞) −→ ℓt ∈ Rd such that

xt = wt + ℓt , |ℓ|t =

∫ t

0
1∂O(xs)d|ℓ|s, and ℓt =

∫ t

0
ν(xs)d|ℓ|s, (1)

where |ℓ|t denotes the total variation of ℓt on the interval [0, t], and the third line is a shorthand
way of saying that

dℓt

d|ℓ|t
∈ ν(xt ), d|ℓ|t − a.e.

When a unique solution exists for each input, we will call the map w·  (x·, ℓ·) the Skorohod
map and will denote it by Γ . Also, the path x· will be referred to as the “output”.

Throughout this paper, we will take ν(x) to be the collection of inward pointing proximal
normal vectors

ν(x) ≡ {ν ∈ Sd−1
: ∃C > 0 ∀x ′

∈ Ō (x ′
− x) · ν + C |x − x ′

|
2

≥ 0}. (2)
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Elementary algebra shows that

(x ′
− x) · ν + C |x − x ′

|
2 < 0 ⇐⇒

x ′
−


x −

ν

2C

2 < 
1

2C

2

(3)

which shows that, geometrically, ν(x) is the collection of unit vectors based at x ∈ ∂O such that
there exists an open ball touching the base of ν but not intersecting O.

The class of domains which we will consider was described by Lions and Sznitman in [6].
Namely, we will say that O is admissible if the definition given below holds.

Definition 1.1. 1. ∀x ∈ ∂O, ν(x) ≠ φ, and there exists a C0 ≥ 0 such that

(x ′
− x) · ν + C0|x − x ′

|
2

≥ 0 for all x ′
∈ O, x ∈ ∂O, and ν ∈ ν(x).

2. There exists a function φ ∈ C2(Rd
; R) and α > 0 such that

∇φ(x) · ν ≥ α > 0 for all x ∈ ∂O and ν ∈ ν(x).

3. There exist n ≥ 1, λ > 0, R > 0, a1, . . . , an ∈ Sd−1, and x1, . . . , xn ∈ ∂O such that

∂O ⊆

n
i=1

B(xi , R) and

x ∈ ∂O ∩ B(xi , 2R) =⇒ ν · ai ≥ λ > 0 for all ν ∈ ν(x).

In view of (3), Part 1 of Definition 1.1 can be seen as a sort of uniform exterior ball condition.
More precisely, it says that not only can every point x ∈ ∂O be touched by an exterior ball
but also that the exterior ball touching x can be scaled to have a uniformly large radius. In the
convex analysis literature, the closure of a set O satisfying Part 1 of Definition 1.1 is said to be
uniformly prox-regular (see [8], especially Theorem 4.1, for more on the properties of uniformly
prox-regular sets).

Parts 2 and 3 of Definition 1.1 are regularity requirements on ∂O which ensure that the
“normal vectors” do not fluctuate too wildly. In this connection, notice that Part 3 is implied
by Part 2 when O is bounded.

In their paper [6], Lions and Sznitman show that for each w· ∈ C([0,∞); Rd) with w0 ∈ Ō,
there exists a unique solution (x·, ℓ·) to the deterministic Skorohod problem when the domain O
is admissible. The map Γ which takes w· to x· is called the deterministic Skorohod map.

We turn next to the formulation of reflected diffusions in terms of a Skorohod problem for
an SDE. Until further notice, we will be looking at Itô SDE’s and will only reformulate them as
Stratonovich SDE’s when it is important to do so.

Let O ⊂ Rd be an admissible domain, and let σ : Ō −→ Hom(Rr
; Rd) and b : Ō −→ Rd be

uniformly Lipschitz continuous maps. Given an r -dimensional Brownian motion W· and x0 ∈ Ō,
a solution to (X ·, L ·) to the reflected SDE (4) is a continuous process {(X t , L t ) : t ≥ 0} which is
progressively measurable with respect to W· and satisfies the conditions that (X t , L t ) ∈ Ō × Rd

and |L|t < ∞ for all t ≥ 0, and, almost surely,

X t = x0 +

∫ t

0
σ(Xs)dWs +

∫ t

0
b(Xs)ds + L t ,

|L|t =

∫ t

0
1∂O(Xs)d|L|s, and L t =

∫ t

0
ν(Xs)d|L|s,

(4)

where |L|t denotes the total variation of L t by time t , and the third line is shorthand for dL t
d|L|t

∈ ν(X t ), d|L|t − a.e.
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Existence and uniqueness of solution to reflected SDE’s was proved by Tanaka in [13] when
O is convex. The extension of his result to admissible domains was made by Lions and Sznitman
in [6] and Saisho in [9]. We refer the reader to those papers for an overview of the subject.

1.3. Our result

With these preliminaries in place, our main result can be summarized as follows. Given a
bounded admissible domain O, suppose that σ ∈ C2(Ō; Hom(Rr

; Rd)) and b : Ō −→ Rd

is uniformly Lipschitz continuous. Then, given an r -dimensional Brownian motion W·, denote
by W N

· the polygonal path obtained by linearly interpolating W· over the N -dyadic intervals
(defined precisely in Section 3). Then, for each x0 ∈ Ō, there exists a unique solution to the
reflected ODE

X N
t = x0 +

∫ t

0
σ(X N

s )dW N
s +

∫ t

0
b(X N

s )ds + L N
t ,

|L N
|t =

∫ t

0
1∂O(X

N
s )d|L N

|s, and L N
t =

∫ t

0
ν(X N

s )d|L N
|s .

Moreover, if (X, L) is the solution to (4) when the stochastic integrals are taken in the sense
of Stratonovich, then the distribution of (X N , L N ,W N ) on C([0,∞); Ō) × C([0,∞); Rd) ×

C([0,∞); Rr ) converges to that of (X, L ,W ). This is the content of Theorem 5.4. Finally, in
Section 6 we show how our result can be applied to better understand the geometry of certain
reflected SDE.

In [16,17] Wong and Zakai show, in the unreflected case, that X N almost surely converges to
X in C([0,∞); Rd) when d = 1 and in the L1 sense when d ≥ 2. In [7] Petterson shows that in
the reflected case with a convex domain, X N converges to X almost surely when either d = 1 or
d ≥ 2 and σ is constant. In view of his results, it would be interesting to know whether almost
sure convergence, or at least convergence in measure, holds in the more general setting in which
we are working here. In light of the cited results, a counter-example would require that d ≥ 2
and that either the domain is non-convex or σ is non-constant. To date, the authors are unaware
of either a proof of stronger convergence or a counter-example to it. Be that as it may, at least for
the applications we consider in Section 6, convergence in distribution is sufficient.

2. Equations with reflection

2.1. Properties of solutions to reflected ODE’s

Suppose that O is a bounded, admissible domain and that σ : Ō −→ Hom(Rr
; Rd) is

uniformly Lipschitz continuous. In this section, we will show that, for each x0 ∈ Ō and piecewise
smooth w· : [0,∞) −→ Rr , there is precisely one solution (x·, ℓ·) to the reflected ODE

xt = x0 +

∫ t

0
σ(xs)dws + ℓt ,

|ℓ|t =

∫ t

0
1∂O(xs)d|ℓ|s, and ℓt =

∫ t

0
ν(xs)d|ℓ|s,

(5)

where x· ∈ C([0,∞); Ō) and ℓt : [0,∞) −→ Rd is a continuous function having finite variation
|ℓ|t on [0, t] for all t > 0. In addition, we will give a geometrically appealing alternate description
of this solution. Previously, existence and uniqueness results for variants of (5) are well known
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in the convex analysis literature. For example, see [3] for such a recent result as well as a good
overview of other known results.

Although the proofs of existence and uniqueness are implicit in the contents of other articles,
we, mimicking the proof of Theorem 3.1 in [6], will prove them here. For this purpose, consider
the map Fw : C([0,∞); Ō) −→ C([0,∞); Ō) given by Fw(y·) = Γ (x0 +


·

0 σ(ys)dws), where
Γ is the Skorohod map (we will henceforth suppress the dependence of F on w). We will show
that F has a unique fixed point, and the key to doing so is contained in the next lemma.

Lemma 2.1. For each T > 0 there exists a C = Cw(T ) < ∞ such that for any pair of paths y·

and y′
· ,

|F(y·)t − F(y′
·)t |

2
≤

∫ t

0
eC(t−τ)

|yτ − y′
τ |

2dτ for all t ∈ [0, T ]. (6)

Proof. Set z· = F(y·) and z′
· = F(y′

·). Given T > 0, we will show that there is a C < ∞ such
that

|zt − z′
t |

2
≤ C

∫ t

0
|zτ − z′

τ |
2 dτ +

∫ t

0
|yτ − y′

τ |
2 dτ


, t ∈ [0, T ].

Once this is proved, the required estimate follows immediately from Gronwall’s inequality.
Let φ be the function associated with O (see part 2 of Definition 1.1). For any constant γ , we

have that

e−γ [φ(zt )+φ(z′
t )]d(eγ [φ(zt )+φ(z′

t )]|zt − z′
t |

2)

= 2(zt − z′
t ) · [(σ (yt )dwt + dℓt )− (σ (y′

t )dwt + dℓ′t )]

+ |zt − z′
t |

2γ [∇φ(zt ) · (σ (yt )dwt + dℓt )+ ∇φ(z′
t )(σ (y

′
t )dwt + dℓ′t )]

= [(2(zt − z′
t )+ γ |zt − z′

t |
2
∇φ(zt )) · ν(zt )]d|ℓ|t

+ [(2(z′
t − zt )+ γ |zt − z′

t |
2
∇φ(z′

t )) · ν(z′
t )]d|ℓ′|t + [2(zt − z′

t ) · (σ (yt )− σ(y′
t ))

+ γ |zt − z′
t |

2(∇φ(zt )σ (yt )+ ∇φ(z′
t )σ (y

′
t ))]dwt .

Taking γ =
−2C0
α

, we have that (cf. Part 1 of Definition 1.1) the first two terms are less than or
equal to 0. Since σ and ∇φ are Lipschitz continuous and dw

dt is bounded on finite intervals, we
know that there exists a C = Cw(T ) < ∞ such that

|zt − z′
t |

2
≤ C

∫ t

0
|zτ − z′

τ |
2dτ +

∫ t

0
|zτ − z′

τ ||yτ − y′
τ |dτ


for t ∈ [0, R]. Thus, because |zτ − z′

τ ||yτ − y′
τ | ≤

1
2 |zτ − z′

τ |
2
+

1
2 |yτ − y′

τ |
2, we get our estimate

after replacing C by 2C . �

Once we have Lemma 2.1, one can apply a standard Picard iteration argument to show that
Fw has a unique fixed point and that this fixed point is the first component of the one and only
pair (xt , ℓt ) which solves (5).

We now want to describe a couple of important properties of the solution (x·, ℓ·).

Lemma 2.2. Let (x·, ℓ·) be the solution to (5) for a given input w· and starting point x0 ∈ Ō.
Then there exists a constant C, depending only on σ , b, and O, such that

d|x |t ≤ Cd|w|t .
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Proof. Set yt = x0 +
 t

0 σ(xs)dws . Then, x· = Γ (y·), and so it follows from Theorem 2.2 in [6]
that d|ℓ|t ≤ d|y|t . Since σ is bounded on Ō, there exists a C < ∞ such that d|y|t ≤ Cd|w|t , and
therefore, because xt = yt + ℓt , we have that d|x |t ≤ d|y|t + d|ℓ|t ≤ C(d|w|t + d|w|t ), from
which the lemma follows immediately. �

We now introduce a more geometric representation of Eq. (5). For a closed set D ⊆ Rd and
z ∈ Rd , let dD(z) ≡ infy∈D |y − z| denote the distance from z to D and denote by

TD(z) ≡


v ∈ Rd

: lim inf
h↘0

dD(z + hv)

h
= 0


the tangent cone (a.k.a. the contingent cone) to D at z. Finally, let projD(z) denote the (possibly
multi-valued) projection of z onto D.

The following is a version of a representation result which was introduced originally in [4].

Theorem 2.3. Let O be a bounded, admissible set and w· a fixed, piecewise smooth input. If
(x·, ℓ·) is the unique solution to (5), then

ẋt = projTŌ(xt )
(σ (xt )ẇt ), t-a.e. (7)

Conversely, given a solution x· to (7), there exists an ℓ· such that (x·, ℓ·) is a solution to (5).

Remark 2.4. In general, the tangent cone TD(z) is only closed and not necessarily convex.
However, Part 1 of Definition 1.1 guarantees that TŌ(z) is convex for all z ∈ Ō (cf. Lemma 2.5
below) and so projK (·) is single valued.

In order to prove Theorem 2.3, we will need to introduce some concepts from convex analysis.
For more information about these concepts and their properties, we refer the reader to the
texts [14,15].

A nonempty set K ⊆ Rd is called a cone if v ∈ K =⇒ λv ∈ K for all λ ≥ 0. Given a cone
K , we denote by K ∗ its polar cone K ∗ to be the set {w : v · w ≤ 0, ∀v ∈ K }. Next, for a given
closed set D ⊆ Rd and a z ∈ D, we define the proximal normal cone to D at z to be the set

N p
D(z) ≡ {v ∈ Rd

: ∃C > 0 s.t. (y − z) · v ≤ C |z − y|
2, ∀y ∈ D}

and the Clarke tangent cone to D at z to be the set

T̂D(z) ≡ {v ∈ Rd
: ∀zn ∈ D s.t. zn → z, ∃vn ∈ TD(zn) s.t. vn → v}.

Note that T̂D(z) is always convex.
We now present a lemma which records the properties of an admissible set O in terms of these

concepts.

Lemma 2.5. Let O be admissible. Then we have the following.

(1) For each z ∈ ∂O,

v ∈ N p
Ō(z) ⇐⇒

−v

|v|
∈ ν(z) for v ≠ 0.

(2) The graph of z −→ N p
Ō(z) is closed. That is, if zi ∈ Ō, vi ∈ N p

Ō(zi ), zi → z, and vi → v,

then v ∈ N p
Ō(z).

(3) TŌ(z) = T̂Ō(z), and so it is convex for all z ∈ Ō.
(4) N p

Ō(z) = TŌ(z)
∗ for all z ∈ Ō.
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Proof. (1) is immediate from our definitions.

(2) follows from (1) and Part 1 of Definition 1.1. Indeed, there exists a C0 > 0 such that for each
i ,

(zi − y) · vi + C0|vi ||zi − y|
2

≥ 0, ∀y ∈ Ō (8)

(note that when zi ∈ O, vi = 0 and (8) holds trivially). Taking i → ∞ we see that
(z − y) · v + C0|v||z − y|

2
≥ 0 for all y ∈ Ō, from which it follows that v ∈ N p

Ō(z).

(3) and (4) follow in a standard way from (2). See Chapter 4. of [15] and Chapter 6 of [14]
(in particular Corollary 6.29) for details. �

Using ideas from [4], we now prove Theorem 2.3.

Proof of Theorem 2.3. First suppose (x·, ℓ·) is a solution to (5). From Lemma 2.2 and its proof,
we see that x· and ℓ· are locally Lipschitz and therefore ẋt = σ(xt )ẇt + ℓ̇t , t-a.e. Since xt+h
and xt−h are in Ō, we have that

ẋt ∈ −TŌ(xt ) ∩ TŌ(xt ), t-a.e., (9)

and, because TŌ(xt ) is convex, ẋt is the projection of σ(xt )ẇt onto TŌ(xt ) if and only if
(σ (xt )ẇt − ẋt ) · (v − ẋt ) ≤ 0 for all, v ∈ TŌ(xt ). Note that by property (1) of Lemma 2.5,
−ℓ̇t ∈ N p

Ō(xt ) (when xt ∈ O this holds trivially), and so, by property (4) of Lemma 2.5 and (9),
we have that

ẋt · ℓ̇t ≤ 0, ẋt · ℓ̇t ≥ 0 =⇒ ẋt · ℓ̇t = 0.

Therefore, using property (4) again, we have that

(σ (xt )ẇt − ẋt ) · (v − ẋt ) = −ℓ̇t · (v − ẋt ) = −ℓ̇t · v ≤ 0

as desired.
Conversely, suppose x· is a solution to (7), and set ℓt ≡

 t
0 ẋs − σ(xs)ẇsds. Then ℓ0 = 0 and,

since σ is bounded, ℓ· is a continuous function of locally bounded variation. Finally, because ẋt
is the projection of σ(xt )ẇt onto the convex set TŌ(xt ), we have that

−ℓ̇t · (v − ẋt ) = (σ (xt )ẇt − ẋt ) · (v − ẋt ) ≤ 0, ∀v ∈ TŌ(xt ).

Since ẋt ∈ TŌ(xt ) and TŌ(xt ) is a convex cone, for each v ∈ TŌ(xt ), xt + v ∈ TŌ(xt ). Thus, by
replacing v with v + xt in the inequality above, we find that −ℓ̇t · v ≤ 0 for all v ∈ TŌ(xt ), and
so −ℓ̇t ∈ TŌ(xt )

∗
= N p

Ō(xt ). Finally, by property (1) of Lemma 2.5, this implies that (xt , ℓt ) is
a solution to (5). �

3. Tightness of the approximating measures

Let (C([0,∞); Rr ),F ,W) be the standard r -dimensional Wiener space. That is, F is the
Borel field for C([0,∞); Rr ) and W is the standard Wiener measure. We will use W· to denote
a generic Wiener path and Ft to denote the σ -algebra generated by W· � [0, t]. Finally, for
each positive integer N , let W N

· denote the N -dyadic linear polygonalization of W·. That is,
W N

m2−N = Wm2−N and W N
· is linear on [m2−N , (m + 1)2−N

] for each m ∈ N.

Next, O ⊂ Rd will be a bounded, admissible domain, and b : Ō −→ Rd and σ : Ō −→

Hom(Rr
; Rd) will be uniformly Lipschitz continuous functions. Given a starting point x0 ∈ Ō,
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for each W N
· , (X N

· , L N
· ) will denote the solution to the reflected ODE (5) with wt and σ(x)

replaced by, respectively,
W N

t
t


∈ Rr

× R and

σ(x)
b(x)


∈ Hom(Rr

× R; Rd
× R).

{X N
t : t ≥ 0} and {L N

t : t ≥ 0} are then progressively measurable with respect to {Ft : t ≥ 0},
and we will use PN on the (X, L ,W )-pathspace C([0,∞); Ō)×C([0,∞); Rd)×C([0,∞); Rr )

to denote the distribution of the triple (X N
t , L N

t ,W N
t ) under W.

In first subsection, we show that the family {PN
: N ≥ 0} is tight on the (X, L ,W )-pathspace.

In second subsection, we also develop some estimates which will needed for the next section.

3.1. Tightness of the PN

By Kolmogorov’s Continuity Criterion, we will know that {PN
: N ≥ 0} is tight as soon as

we prove that for each m ∈ N and T > 0 there exists a Cm(T ) < ∞, which is independent of N ,
such that for all 0 ≤ s < t ≤ T ,

E[|W N
t − W N

s |
2m+1

] ≤ Cm(T )(t − s)2
m

(10)

E[|X N
t − X N

s |
2m+1

] ≤ Cm(T )(t − s)2
m

(11)

E[|L N
t − L N

s |
2m+1

] ≤ Cm(T )(t − s)2
m
. (12)

First note that (10) is an easy consequence of the equality E[|Wt − Ws |
2m+1

] = Cm(t − s)2
m

where Cm = E[|W1|
2m+1

].
The proofs of (11) and (12) are a little more involved.

Lemma 3.1. There is a C < ∞ such that for all s < t ≤ s + 2−N ,

|X N
t − X N

s | ≤ C |W N
t − W N

s | + C(t − s). (13)

Proof. When s and t lie in the same N -dyadic interval, this follows more or less immediately
from Lemma 2.2. Namely,

|X N
t − X N

s | ≤ |X N
|t − |X N

|s ≤ C((|W N
|t − |W N

|s)+ (t − s))

= C(|W N
t − W N

s | + (t − s)),

where the last equality comes from the fact that s and t lie in the same N -dyadic interval. When
they are in adjacent N -dyadic intervals, one can reduce to the case when they are in the same
N -dyadic interval by an application of Minkowski’s inequality. �

It remains to handle s and t with t −s > 2−N , and for this we will need the next three lemmas.
Here, and elsewhere, ⌊u⌋N is shorthand for the largest N -dyadic number m2−N dominated by u.
That is, ⌊u⌋N equals 2−N times the integer part of 2N u. When the choice of N is clear from the
context, we simply write ⌊u⌋. We will also use the notation 1W N

m2−N := W N
(m+1)2−N − W N

m2−N

which gives the convenient algebraic relation W N
u − W N

⌊u⌋
= (u − ⌊u⌋)2N1W N

⌊u⌋
.



1472 L.C. Evans, D.W. Stroock / Stochastic Processes and their Applications 121 (2011) 1464–1491

Lemma 3.2. For m ≥ 0 there exists a Cm < ∞ such that for all s < t

E

∫ t

s
|W N

u − W N
⌊u⌋

| d|W N
|u

2m
≤ Cm(t − s)2

m
(14)

and

E

∫ t

s
(u − ⌊u⌋) d|W N

|u

2m
≤ Cm(t − s)2

m
. (15)

Proof. If s < t lie in the same N -dyadic interval we have that∫ t

s
|W N

u − W N
⌊u⌋

|d|W N
|u = 4N

|1W N
⌊s⌋|

2
∫ t

s
(u − ⌊u⌋)du ≤ 2N

|1W N
⌊s⌋|

2(t − s)∫ t

s
(u − ⌊u⌋)d|W N

|u = 2N
|1W N

⌊s⌋|

∫ t

s
(u − ⌊u⌋)du ≤ |1W N

⌊s⌋|(t − s)

and so

E

∫ t

s
|W N

u − W N
⌊u⌋

|d|W N
|u

2m2−m

≤ Cm(t − s)

E

∫ t

s
(u − ⌊u⌋)d|W N

|u

2m2−m

≤ Cm2−N2m−1
(t − s) ≤ Cm(t − s).

(16)

Applying the Minkowski inequality, we see that the inequalities (16) continue to hold for general
s < t . �

Lemma 3.3. Let φ and α be as in Part 2 of Definition 1.1, and set γ = −
2C0
α

, where C0 is
the constant in Part 1 of that definition. Given s ≥ 0, there exist {Ft : t ≥ 0} progressively
measurable functions {Zτ,s : τ ≥ s} and {Vτ,s : τ ≥ s} satisfying

|Z N
u,s | ≤ C |X N

u − X N
s |, |Z N

u2,s − Z N
u1,s | ≤ C |X N

u2
− X N

u1
|, and |V N

u,s | ≤ C, (17)

with a constant C < ∞, which is independent of s and N, such that

eγφ(X
N
t )|X N

t − X N
s |

2
≤

∫ t

s
Z N

u,sdW N
u +

∫ t

s
V N

u,sdu for all t > s. (18)

Proof. Just as in the proof of Lemma 2.1,

d(eγφ(X
N
t )|X N

t − X N
s |

2)

≤ eγφ(X
N
t )(2(X N

t − X N
s )+ γ |X N

t − X N
s |

2
∇φ(X N

t ))σ (X
N
t )dW N

t

+ eγφ(X
N
t )(2(X N

t − X N
s )+ γ |X N

t − X N
s |

2
∇φ(X N

t ))b(X
N
t )dt.

from which (18) follows with

Z N
u,s = eγφ(X

N
u )(2(X N

u − X N
s )+ |X N

u − X N
s |

2γ∇φ(X N
u ))σ (X

N
u )

and

V N
u,s = eγφ(X

N
u )(2(X N

u − X N
s )+ |X N

u − X N
s |

2γ∇φ(X N
u )) · b(X N

u ).
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Since ∇φ, b, and σ are Lipschitz continuous functions on the bounded domain O, it is clear how
to choose the C in (17). �

The next lemma is a variant of Burkholder’s inequality.

Lemma 3.4. Let α : [0,∞) −→ Hom(Rr
; Rm) be an {Ft : t ≥ 0}-progressively measurable

function and let p ≥ 1. Then there exists a constant C p > 0 depending only on p such that

E

[∫ t

s
α(⌊τ⌋)dW N

τ

p]
≤ C p E

∫ t

s
|α(⌊τ⌋)|2dτ

 p
2

.

Proof. For simplicity of exposition, we will assume that s is an N -dyadic rational. The “N -
dyadic remainder” on the left side of the interval [s, t] is handled the same as that on the right
side.

E

[∫ t

s
α(⌊τ⌋)dW N

τ

p]
≤ C p E

∫ ⌊t⌋

s
α(⌊τ⌋)dW N

τ

p
+ C p E

[∫ t

⌊t⌋
α(⌊τ⌋)dW N

τ

p]

≤ C p E

∫ ⌊t⌋

s
α(⌊τ⌋)dWτ

p
+ C p2N p(t − ⌊t⌋)p E[|α(⌊t⌋)|p

]E[|1W N
⌊t⌋|

p
]

≤ C p E

∫ ⌊t⌋

s
|α(⌊τ⌋)|2dτ

 p
2

+ C p(t − ⌊t⌋)
p
2 E[|α(⌊t⌋)|p

]

≤ C p E

∫ t

s
|α(⌊τ⌋)|2dτ

 p
2

. �

We now prove (11) in the case that t − s > 2−N by induction on m. Taking into account the
fact that φ is bounded, we can use (18) to derive the estimate

E[|X N
t − X N

s |
2m+1

] ≤ CmE

∫ t

s
(Z N

u,s − Z N
⌊u⌋∨s,s)dW N

u

2m

+ CmE

∫ t

s
Z N

⌊u⌋∨s,sdW N
u

2m
+ CmE

∫ t

s
V N

u,sdu

2m
(19)

for some Cm < ∞. Because V N
u,s is bounded (see (17)), the third term is bounded by a constant

times (t − s)2
m

. For the first term we have that, for some constants C < ∞,

E

∫ t

s
(Z N

u,s − Z N
⌊u⌋∨s,s)dW N

u

2m
≤ CE

∫ t

s
|X N

u − X N
⌊u⌋∨s |d|W N

|u

2m

≤ CE

∫ t

s
|W N

u − W N
⌊u⌋∨s |d|W N

|u

2m
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+ CE

∫ t

s
(u − (⌊u⌋ ∨ s))d|W N

|u

2m
≤ C(t − s)2

m
,

where the first inequality follows from (17), the second inequality from (13), and the third in-
equality from (14) and (15). Finally, for the second term we have that

E

∫ t

s
Z N

⌊u⌋∨s,sdW N
u

2m
≤ CE

∫ t

s
|Z N

⌊u⌋∨s,s |
2du

2m−1

≤ C(t − s)(2
m−1

−1)E
[∫ t

s
|Z N

⌊u⌋∨s,s |
2m

du

]
≤ C(t − s)(2

m−1
−1)E

[∫ t

s
|X N

⌊u⌋∨s − X N
s |

2m
du

]
≤ C(t − s)(2

m−1
−1)E

[∫ t

s
((⌊u⌋ ∨ s)− s)2

m−1
du

]
≤ C(t − s)(2

m−1
−1)E

[∫ t

s
(t − s)2

m−1
du

]
≤ C(t − s)2

m
,

where the first inequality is an application of Lemma 3.4, the third inequality follows from (17),
the fourth inequality is our induction hypothesis, and the fifth inequality follows from our as-
sumption that t − s > 2−N . Hence we will be done once we show that (11) holds when m = 0.
But we can handle the base case by the same estimates as above, only now noting that the second
term of (19) is 0 in this case.

Finally, we must prove (12). Since

dX N
t = σ(X N

t )dW N
t + b(X N

t )dt + dL N
t

we have that

E[|L N
t − L N

s |
2m+1

] ≤ CE[|X N
t − X N

s |
2m+1

] + C E

∫ t

s
σ(X N

u )dW N
u

2m+1

+ CE

∫ t

s
b(X N

u )du

2m+1
.

We already know that the first term is bounded from above by C(t − s)2
m

. Moreover, because b
is bounded and 0 ≤ s < t ≤ T , the third term is bounded above by a constant depending on T
times (t − s)2

m
. For the second term we have that

E

∫ t

s
σ(X N

u )dW N
u

2m+1
≤ CE

∫ t

s
σ(X N

u )− σ(X N
⌊u⌋
)dW N

u

2m+1

+ CE

∫ t

s
σ(X N

⌊u⌋
)dW N

u

2m+1
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≤ CE

∫ t

s
|X N

u − X N
⌊u⌋

|d|W N
|u

2m+1
+ C(t − s)2

m

≤ C


E

∫ t

s
|W N

u − W N
⌊u⌋

|d|W N
|u

2m

+ E

∫ t

s
(u − ⌊u⌋)d|W N

|u

2m
+ C(t − s)2

m

≤ C(t − s)2
m−1

where the second inequality follows from Lemma 3.4 and the fact that σ is bounded, the third
inequality follows from (13), and the last inequality follows from (14) and (15). Putting these
inequalities together we get (12).

Given a ψ : [0,∞) −→ Rd , β ∈ (0, 1], and t > s > 0, set

‖ψ‖β,[s,t] = sup
s≤u1<u2≤t

|ψ(u2)− ψ(u1)|

(u2 − u1)β
.

As an immediate consequence of the estimates in (10), (11), and (12) combined with Kol-
mogorov’s Continuity Criterion (cf. Theorem 3.1.4 in [10]), we have the following theorem.

Theorem 3.5. For each β < 1
2 , p ∈ (1,∞), and T > 0, there exists a Kβ,p(T ) < ∞ such that

P(‖W N
‖β,[0,T ] ∨ ‖X N

‖β,[0,T ] ∨ ‖L N
‖β,[0,T ] ≥ R) ≤ Kβ,p(T )R

−p for R > 0.

3.2. Controlling the variation of L N
·

In general, the variation of a function cannot be controlled by its uniform norm. Thus, before
we can apply the tightness result in the previous subsection to get the sort of result which we are
seeking, we must give a separate argument which shows that the variation of L N

· can be estimated
in terms of its uniform norm. To be precise, Theorem 3.6 says that the variation of L N

· � [0, t]
can be estimated in terms of the uniform norm of L N

· � [0, t] and the Hölder norm of X N
· � [0, t].

Hence, since Theorem 3.5 provides control on the Hölder, and therefore the uniform, norms of
the three processes W N

· , X N
· , and L N

· , our tightness result will be sufficient for our purposes
(cf. Theorem 4.1 below).

In the following, and elsewhere, ‖ψ‖[t1,t2] = supτ∈[t1,t2] |ψ(τ)|.

Theorem 3.6. For all 0 ≤ s < t ,

|L N
|t − |L N

|s ≤ C((t − s)R−4
‖X N

‖
4
1
4 ,[s,t]

+ 1)‖L N
‖[s,t], (20)

where R is the constant given in Part 3 of Definition 1.1.

Our proof follows the proof of Lemma 1.2 in [6].

Proof. Let O1, . . . ,On denote the open balls B(x1, 2R), . . . , B(xn, 2R) appearing in Part 3 of
Definition 1.1, and choose an open set O0 such that Ō0 ⊆ O and Ō ⊆ O0 ∪

n
i=1 B(xi , R).
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Given x ∈ Ō, let k(x) be the smallest 1 ≤ k ≤ n such that x ∈ B(xk, R), or otherwise let k(x)
be 0. Next, set ζ0 = s and define ζm for m ≥ 1 inductively so that

ζm+1 = t ∧ inf{τ ≥ ζm : X N
τ ∉ Ok(X N

ζm
)}.

Consider the time interval [ζm, ζm+1]. If ζm < t and k(X N
ζm
) = 0, then L N

· � [ζm, ζm+1] is

constant and so |L N
|ζm+1 − |L N

|ζm = 0. If ζm < t and km ≡ k(X N
ζm
) ≥ 1, then (cf. Part 3 of

Definition 1.1)

(L N
ζm+1

− L N
ζm
) · akm =

∫ ζm+1

ζm

ν(X N
τ ) · akm d|L N

|τ ≥ λ(|L N
|ζm+1 − |L N

|ζm ).

Hence, in either case,

|L N
|ζm+1 − |L N

|ζm ≤ C |L N
ζm+1

− L N
ζm

| ≤ C‖L N
‖[s,t].

At the same time, if ζm+1 < t and k(X N
ζm
) ≥ 1, then |X N

ζm+1
− X N

ζm
| ≥ R and so

R

(ζm+1 − ζm)
1
4

≤

|X N
ζm+1

− X N
ζm

|

(ζm+1 − ζm)
1
4

≤ ‖X N
‖ 1

4 ,[0,t]
.

Thus if M = sup{m : ζm+1 < t}, then

M
2

≤ 1 + |{m : ζm+1 < t and k(X N
ζm
) ≥ 1}| ≤ 1 +

(t − s)‖X N
‖

4
1
4 ,[s,t]

R4 ,

which, in conjunction with the preceding, means that

|L N
|t − |L N

|s ≤

M−1−
m=0

(|L N
|ζm+1 − |L N

|ζm )+ (|L N
|t − |L N

|ζM)

≤ (C M + 2)‖L N
‖[s,t] ≤ C[(t − s)R−4

‖Xn
‖

4
1
4 ,[s,t]

+ 1]‖L N
‖[s,t]. �

4. Associated martingale and submartingale problems

We know that the sequence of measures {PN
: N ≥ 0} is on (X, L ,W )-pathspace. Our

eventual goal is to show that this sequence converges. Equivalently, we want to show that all
limit points are the same. In this section, we will show that every limit solves martingale and
submartingale problems, and in the next section we will show that this fact is sufficient to check
that convergence takes place.

Up until now, we have needed only the assumptions that O is bounded and admissible,
and σ and b are Lipschitz continuous. However, starting now, we will be assuming that σ ∈

C2(Ō; Hom(Rr
; Rd)). In addition, it will be convenient to make a change in our notation. Instead

of writing the equation which determines (X N
t , L N

t ) (pathwise) as

dX N
t = σ(X N

t )dW N
t + b(X N

t )dt + dL N
t , X N

0 = x0, (21)

we will use the equivalent expression

dX N
t =

r−
i=1

Vi (X
N
t )d(W

N
i )t + V0(X

N
t )dt + dL N

t , X N
0 = x0 (22)
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where Vi is the i th column of the matrix σ and V0 = b. At the same time, we introduce the vector
fields Ṽi : Ō −→ Rd

× Rr given by Ṽi =


Vi
ei


for 1 ≤ i ≤ r and Ṽ0 =


V0
0


, where {e1, . . . , er }

is the standard, orthonormal basis in Rr . Then, PN -almost surely,

dYt =

r−
i=1

Ṽi (X t )d(Wi )t + Ṽ0(X t )dt, Y0 =


x0
0


(23)

where Yt =


Xt − L t

Wt


. In keeping with this notation, we use DVi and DṼi

to denote the directional

derivative operators on Rd and Rd
× Rr determined, respectively, by Vi and Ṽi . Finally, for ξ ∈

Rd , Tξ will denote the translation operator on C(Rd
×Rr

; R) given by Tξϕ(x, y) = ϕ(x − ξ, y).

Theorem 4.1. Let P be any limit point of the sequence {PN
: N ≥ 0}. Then for all h ∈

C2
b(R

d
× Rr

; R),

h(Yt )−

∫ t

0


1
2

r−
i=1

[D2
Ṽi

TLs h](Xs,Ws)+ [DṼ0
TLs h](Xs,Ws)


ds (24)

is a P-martingale relative to the filtration {Bt : t ≥ 0} generated by the paths in the (X, L ,W )-
pathspace. Also, for all f ∈ C2

b(R
d
; R) satisfying ∂ f

∂ν
(x) ≥ 0 for every x ∈ ∂O and ν ∈ ν(x),

f (X t )− f (x0)−

∫ t

0


1
2

r−
i=1

D2
Vi

f (Xs)+ DV0 f (Xs)


ds (25)

is a P-submartingale relative to the filtration {Bt : t ≥ 0}.

We will begin with the proof of the martingale property for (24), and, without loss of gener-
ality, we will do so under the assumption that h is smooth and compactly supported. What we
need to show is that for any limit point P, 0 ≤ s < t and bounded, continuous, Bs-measurable
F : C([0,∞); Rd

× Rd
× Rr ) −→ [0,∞),

EP
[

h(Yt )− h(Ys)−

∫ t

s
L̃h(u)du


F

]
= 0 (26)

where we have used L̃h(u) to denote the integrand in (24), and clearly it suffices to check this
when s and t are M-dyadic rationals for some M ∈ N. Thus, it suffices to show that

EP
N
[

h(Yt )− h(Ys)−

∫ t

s
L̃h(u)du


F

]
→ 0 (27)

for M-dyadic s and t and bounded, Bs-measurable F ∈ C([0,∞); Rd
× Rd

× Rr ).
For N ≥ M , write

h(Yt )− h(Ys) =

2N t−1−
m=2N s

h(Y(m+1)2−N )− h(Ym2−N ),

and, for each term in the sum, use (23) to see that, PN -almost surely,
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h(Y(m+1)2−N )− h(Ym2−N ) =

∫ (m+1)2−N

m2−N

r−
i=1

[DṼi
TLτ h](Xτ ,Wτ )(Ẇi,m)dτ

+

∫ (m+1)2−N

m2−N
[DṼ0

TLτ h](Xτ ,Wτ )dτ,

where Ẇi,m ≡ 2N (Wi ((m + 1)2−N )− Wi (m2−N )).
Since

2N t−
m=2N s

∫ (m+1)2−N

m2−N
[DṼ0

TLτ h](Xτ ,Wτ )dτ =

∫ t

s
[DṼ0

TLτ h](Xτ ,Wτ )dτ,

the second term on the right causes no problem.
To handle the first term, note that

[DṼi
TLτ h](Xτ ,Wτ ) = [DṼi

TLm2−N h](Xτ ,Wτ )

−

d−
k=1

∫ τ

m2−N
[DṼi

TLσ ∂xk h](Xτ ,Wτ ) dLσ .

Since the second term on the right is dominated by a constant times |L|(m+1)2−N − |L|m2−N , we
see that

EP
N


2N t−

m=2N s

∫ (m+1)2−N

m2−N
([DṼi

TLτ h] − [DṼi
TLm2−N h])(Xτ ,Wτ ) dτ


Ẇi,m




≤ C2−
N
4 EP

N
[|L|t‖W‖ 1

4 ,[0,t]
] −→ 0

as N → ∞.
Next, use (22) to see that

[DṼi
TLm2−N h](Xτ ,Wτ ) = [DṼi

TLm2−N h](Xm2−N ,Wm2−N )

+

∫ τ

m2−N
[DṼ0

DṼi
TLm2−N h](Xσ ,Wσ ) dσ

+

d−
k=1

[∂xk DṼi
TLm2−N h](Xσ ,Wσ ) dLσ

+

r−
j=1

Ẇ j,m

∫ τ

m2−N
[DṼ j

DṼi
TLm2−N h](Xσ ,Wσ ) dσ.

Since the conditional PN -expected value of

Ẇi,m[DṼi
TLm2−N h](Xm2−N ,Wm2−N )

given Bs is zero, the first term on the right does not appear in the computation. Moreover, After
integrating the second two terms over [m2−N , (m + 1)2−N

], multiplying by Ẇi,m , and summing
from m = 2N to m = 2N t , one can easily check that the absolute values of the resulting quantities
have PN -expected values which tend to 0 as N → ∞.
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Finally, again applying (22), one finds that∫ τ

m2−N
[DṼ j

DṼi
TLm2−N h](Xσ ,Wσ ) dσ

can be replaced by

(τ − m2−N )[DṼ j
DṼi

TLm2−N h](Xm2−N ,Wm2−N )

plus terms which make no contributions in the limit as N → ∞. Hence, we are left with quanti-
ties of the form

2N t−
m=2N s

2−2N−1Ẇ j,m Ẇi,m[DṼ j
DṼi

TLm2−N h](Xm2−N ,Wm2−N ).

Since the PN -conditional expected value of 2−2N Ẇ j,m Ẇi,m is 2−N δi, j ,

EP
N

 2N t−
m=2N s

2−2N−1Ẇ j,m Ẇi,m[DṼ j
DṼi

TLm2−N h](Xm2−N ,Wm2−N )

 F


=
δi, j

2
EP

N

2−N

(m+1)2N−
m=2N s

[DṼ j
DṼi

TLm2−N h](Xm2−N ,Wm2−N )

 F

 ,
which, as N → ∞, has that same limit as

δi, j

2
EP

N
[∫ t

s
[DṼ j

DṼi
TLs h](Xs,Ws) ds


F

]
.

The proof of (25) is similar, but easier, and so we will skip the details. The only difference is
that when we apply (22) to the difference f (X(m+1)2−N ) − f (Xm2−N ), we throw away the dLτ
integral since, under our hypotheses, it is non-negative.

5. Convergence

In this section, we complete our program of proving {PN
: N ≥ 0} converges to the dis-

tribution of an appropriate Stratonovich reflected SDE. By the uniqueness result of Lions and
Sznitman (Theorem 3.1 of [6]) and the tightness which we proved in 3.1, the convergence will
follow as soon as we show that every limit P is the distribution of that reflected SDE.

Let P be any limit of {PN
: N ≥ 0}. By Theorem 4.1, we know that, for all h ∈ C2

b
(Rd

× Rr
; R),

h(X t − L t ,Wt )− h(x0, 0)−

∫ t

0
L̃h(s)ds is a P martingale, (28)

relative to {Bt : t ≥ 0}, where

L̃h(s) =
1
2

r−
i=1

[D2
Ṽi

TLs h](Xs,Ws)+ [DṼ0
TLs h](Xs,Ws).
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Using elementary stochastic calculus (cf. Theorem 8.1.1 in [11]), it follows from (28) that
{Wt : t ≥ 0} is a P-Brownian motion relative to {Bt : t ≥ 0} and that, P-almost surely,

X t − x0 −

∫ t

0


1
2

r−
i=1

[DVi Vi ](Xs)+ V0(Xs)


ds − L t =

∫ t

0
σ(Xs)dWs,

which can be rewritten in Stratonovich form as

X t − x0 =

r−
i=1

∫ t

0
Vi (Xs) ◦ dWs +

∫ t

0
V0(Xs) ds + L t . (29)

Thus, the only remaining question is whether {L t : t ≥ 0} has the required properties. That is,
whether, P-almost surely, |L|t < ∞ and

 t
0 1O(Xs) d|L|s = 0 for all t ≥ 0, and dL t

d|L|t
∈ ν(X t )

a.e.
Since the local variation norm is a lower semicontinuous function of local uniform conver-

gence, Theorem 3.6 tells us that, P-almost surely, L · has locally bounded variation. In fact, by
combining that theorem with the estimates in Theorem 3.5, one sees that, for all t ≥ 0, |L|t has
finite P-moments of all orders.

In order to prove the other properties of L · we will use the second part of Theorem 4.1, which
says that for every f ∈ C2

b(R
d
; R) satisfying ∂ f

∂ν
(x) ≥ 0 for all x ∈ ∂O and ν ∈ ν(x),

f (X t )−

∫ t

0
L f (Xs)ds is a P submartingale (30)

relative to {Bt : t ≥ 0}, where

L f (x) =
1
2

r−
i=1

D2
Vi

f (x)+ DV0 f (x).

Now compare this to what one gets by applying Itô’s formula to (29). Namely, his formula says
that if ξ f

t =
 t

0 ∇ f (Xs) · dLs then

f (X t )−

∫ t

0
L f (Xs)− ξ

f
t is a P-martingale.

Thus, ξ f
· is P-almost surely non-decreasing. Starting from this observation and using the argu-

ments in Lemmas 2.3 and 2.5 of [12], one can prove the following lemma.

Lemma 5.1. For f ∈ C2
b(R

d
; R), define ξ f

· as above. Then, P-almost surely,


∞

0 1O(Xs)

d|ξ f
|s = 0. Moreover, if ∂ f

∂ν
(x) ≥ 0 for all x in an open set U and all ν ∈ ν(x), then, P-almost

surely, t  
 t

0 1U (Xs) dξ f
s is non-decreasing.

Because ei · L · = ξ
xi
· , it is obvious from the first part of Lemma 5.1 that


∞

0 1O(Xs) d|L|s =

0 P-almost surely, and so all that we have to do is to show that, P-almost surely, dL t
d|L|t

∈ ν(X t )

a.e. To this end, let φ be the function in Part 2 of Definition 1.1, and define

a f (x) = inf
ν∈ν(x)

∂ f
∂ν
(x)

∂φ
∂ν
(x)

and b f (x) = sup
ν∈ν(x)

∂ f
∂ν
(x)

∂φ
∂ν
(x)

for x ∈ ∂O.
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Lemma 5.2. If {xn : n ≥ 1} ⊆ ∂O, νn ∈ ν(xn) for each n ≥ 1, and (xn, νn) −→ (x, ν) in
∂O × SN−1, then ν ∈ ν(x). In particular, for each f ∈ C2

b(R
d
; R), a f is lower semicontinuous

and b f is upper semicontinuous on ∂O. Furthermore, if (x, ℓ) ∈ ∂O × SN−1 and there exists
a β ≥ 0 such that ∇ f (x) · ℓ ≥ βa f (x) for a set S of f ∈ C2

b(R
d
; R) with the property that

{∇ f (x) : f ∈ S} is dense in Rd , then ℓ ∈ ν(x).

Proof. The initial assertion is an easy consequence of Parts 1 and 2 of Definition 1.1. Next,
suppose that xn −→ x in ∂O. Because, by the first assertion, ν(y) is compact for each y ∈ ∂O,
for each n ≥ 1 there is a νn ∈ ν(xn) such that a f (xn) =

∇ f (xn)·νn
∇φ(xn)·νn

. Now choose a subsequence

{xnm : m ≥ 1} so that limn→∞
a f (xn) = limm→∞ a f (xnm ) and νnm −→ ν in SN−1. Then

ν ∈ ν(x) and so

a f (x) ≤
∇ f (x) · ν

∇φ(x) · ν
≤ lim inf

n→∞
a f (xn).

The same argument shows that b f is upper semicontinuous.
Next, let (x, ℓ) and β be as in the final assertion. Then, by Part 2 of Definition 1.1. By taking

f to be linear in a neighborhood of Ō, one sees that for every v ∈ Rd there exists a ν ∈ ν(x)
such that v · ℓ ≥ β v·ν

∇φ(x)·ν . Hence, for each x ′
∈ O there is a ν ∈ ν(x) such that

(x ′
− x) · ℓ ≥ β

(x ′
− x) · ν

∇φ(x) · ν
≥ −

βC0

α
|x ′

− x |
2,

which, by (3), means that ℓ ∈ ν(x). �

Lemma 5.3. For each f ∈ C2
b(R

d
; R), P-almost surely dξ f

· is absolutely continuous with

respect to dξφ· and a f (X t ) ≤
dξ f

·

dξφ·
(t) ≤ b f (X t ) for dξφ· -almost every t ≥ 0.

Proof. First observe that f  ξ
f

· is linear. Now choose λ > 0 so that ∇(λφ − f )(x) · ν ≥ 0 for
all x ∈ ∂O and ν ∈ ν(x). Then, ξλφ− f

· = λξ
φ
· − ξ

f
· is P-almost surely non-decreasing, which

proves that dξ f
· ≪ dξφ· and that dξ f

·

dξφ·
≤ λ P-almost surely.

The proof that, P-almost surely, α(t) ≡
dξ f

·

dξφ·
(t) lies between a f (X t ) and b f (X t ) for dξφ· -

almost every t ≥ 0 is a simple localization of the preceding. For example, to prove the lower
bound, use the lower semicontinuity of a f to choose, for each n ≥ 1, a finite cover of ∂O by
open balls B(xk,n, rn), 1 ≤ k ≤ kn such that xk,n ∈ ∂O, rn ≤

1
n , and a f (y) ≥ a f (xk,n)−

1
n for

all y ∈ B(xk,n, rn) ∩ ∂O. Then

∂ f

∂ν
(y) ≥


a f (xk,n)−

1
n


∂φ

∂ν
(y) for all 1 ≤ k ≤ kn, y ∈ B(xk,n, rn), and ν ∈ ν(y).

Now let µ be the Borel measure on C([0,∞); Rd
× Rd

× Rr )× [0,∞) determined by

µ(Γ × [a, b]) = EP[ξφ(b)− ξφ(a), Γ ]

for all Borel subsets Γ of C([0,∞); Rd
× Rd

× Rr ) and all a < b. Then, by Lemma 5.1, we can
find a Borel measurable set A ⊆ C([0,∞); Rd

× Rd
× Rr ) × [0,∞) whose complement has

µ-measure 0 and on which both

X · ∈ ∂O and 1B(xk,n ,rn)(X ·)


a f (xk,n)−

1
n


≤ 1B(xk,n ,rn)(X ·)

dξ f
·

dξφ·
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hold for all n ≥ 1 and 1 ≤ k ≤ kn . Hence, again by the lower semicontinuity of a f , we see that
dξ f

·

dξφ·
≥ a(X ·). The proof of the upper bound is the same. �

Theorem 5.4. Let PN be the distribution of (X N , L N ) under Wiener measure. Then {PN
:

N ≥ 0} converges to the distribution P of the solution to the reflected stochastic differential
equation (29).

Proof. As we said earlier, everything comes down to showing that if P is a limit of {PN
: N ≥ 0}

then, P-almost surely ℓ· ≡
dL ·

d|L|·
∈ ν(X ·) d|L|·-almost everywhere. Thus, because, without loss

of generality, we may assume that |ℓ·| ≡ 1, the second part of Lemma 5.2 says that it suffices for
us to show that, P-almost surely, there exist a β· ≥ 0 such that ∇ f (X ·) · ℓ· ≥ β·a f (X ·) d|L|·-a.e.
for sufficiently many f ’s. To this end, first note that, since ξφ· is P-almost surely non-decreasing,
β· ≡ ∇φ(X ·) · ℓ· ≥ 0 d|L|·-a.e. P-almost surely. Second, because L · =

∑d
i=1 ξ

xi
· P-almost

surely, we know that, P-almost surely, d|L|· ≪ dξφ· and that, for each f ∈ C2
b(R

d
; R),

∇ f (X ·) · ℓ· =
dξ f

·

d|L|·
=

dξ f
·

dξφ·
∇φ(X ·) · ℓ· ≥ β·a

f (X ·)d|L|·-a.e. (∗)

Finally, let D be a countable, dense subset of Rd , and for each v ∈ D choose fv ∈ C2
b(R

d
; R) so

that fv(x) = v · x in a neighborhood of Ō. Then, P-almost surely, (∗) holds simultaneously with
f = fv for every v ∈ D. �

Remark 5.5. In our derivation of Theorem 5.4 we used (30) to show that L · has the required
properties. However, using the ideas in Lemma 1.3 of [6], we could have based our proof on the
fact that the approximating L N

· ’s had these properties. Our choice of proof was dictated by two
considerations. First, it seemed to us to be the simpler one. Second, and more important, it brings
up an interesting question. Namely, does (30) by itself determine P? In [12] it was shown that
(30) determines P when O has a smooth boundary and L is strictly elliptic, even if the coefficients
are not smooth. Thus, the question is whether the same result holds when O is only admissible
and the coefficients of L are smooth but may be degenerate.

6. Observations and applications

It should be noticed that although the approximating L N
· ’s as well as limit L · have locally

bounded variation, we cannot replace our (X, L ,W )-pathspace with one in which the middle
component is the space of continuous paths of locally bounded variation. The reason is that
although L N

· will be absolutely continuous, L · will not. Indeed, consider reflected Brownian
motion on the halfline [0,∞). In this case L N

t = sup0≤s≤t [−W N
s ] is piecewise constant and

therefore absolutely continuous. On the other hand, L t = sup0≤s≤t [−Ws], which is the local
time at 0 of W· and as such is singular.

The main application of our result that we consider is the following. Suppose that for each
N , the paths X N

t satisfy a certain geometric property almost surely and the set S of paths which
satisfy this geometric property is closed in C([0,∞); Rd). It then follows that the paths of X t
also satisfy this geometric property almost surely since

P(S) ≥ lim sup
N→∞

PN (S) = 1 (31)
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Fig. 1. The geometric behavior of the approximating process depends on the starting location.

where, abusing notation, we use PN and P to denote the marginal distributions of PN and P
on X -pathspace. That is, PN (A) = PN (A × C([0,∞); Rd) × C([0,∞); Rr )) and P(A) =

P(A × C([0,∞); Rd) × C([0,∞); Rr )). We conclude with several examples of the sort of
application which we have in mind.

Example 6.1. In R2, let O be the rectangle [−1, 1] × [0, 2]. Fix x0 ∈ Ō and consider the
Stratonovich reflected SDE

dX t = σ(X t ) ◦ dWt + dL t , X0 = x0,

where σ(x) =


x2

−x1


. Then

if |x0| > 1, |X t | ≤ |x0| for t > 0 P-a.s. (32)

and

if |x0| < 1, |X t | = |x0| for t > 0 P-a.s. (33)

Proof. In view of (31), it suffices to prove that (32) and (33) hold PN -a.s. The distribution of X ·

under PN is, in view of Theorem 2.3, the same as the distribution of X N
· under W, where X N

·

solves the ODE

Ẋ N
t = projTŌ(X

N
t )
(σ (X N

t )Ẇ
N
t ), X N

0 = x0.

It is easy to check that ∀x ∈ Ō, a ∈ R, x · projTŌ(x)
(σ (x)a) is non-negative or non-

positive according as |x | ≥ 1 or |x | ≤ 1. Hence, because, for each Wt , d
dt (|X

N
t |

2) =

2X N
t · projTŌ(X N

t )
(σ (X N

t )Ẇ
N
t ) dt-a.e., (32) and (33) for X N

· are obvious. Fig. 1 shows a sample

path of X N
t under W (to save space, we denote the “intended velocity” σ(X N

t )Ẇ
N
t by vt and the

“actual velocity” projTŌ(X
N
t )
(σ (X N

t )Ẇ
N
t ) by ṽt ). �

We next consider coupled reflected Brownian motion, for which we will need the following
lemmas.

Lemma 6.2. Suppose O is bounded and admissible. Then O × O is bounded and admissible as
well. Furthermore, for each (x, y) ∈ ∂(O × O), the set of normal vectors ν(x, y) defined by
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(2) has the representation

ν(x, y) =


a1νx
a2νy


: νx ∈ ν(x), νy ∈ ν(y), a2

1 + a2
2 = 1, a1, a2 > 0


,

when (x, y) ∈ ∂O × ∂O, (34)

ν(x, y) =


νx
0


: νx ∈ ν(x)


, when (x, y) ∈ ∂O × O,

and

ν(x, y) =


0
νy


: νy ∈ ν(y)


, when (x, y) ∈ O × ∂O.

Proof. The representation formulas are a straightforward consequence of the definition of inward
pointing unit proximal normal vectors in (2). That O × O satisfies Part 1 of Definition 1.1 follows
from the representation formulas and the fact that O satisfies Part 1 of Definition 1.1.

We next show that O × O satisfies Part 2 of Definition 1.1. Since O is bounded, φ is bounded
in O and so after adding a constant to φ if necessary, we may assume that φ ≥ 1 in Ō.

Let Φ(x, y) ≡ φ(x)φ(y). Then for all (x, y) ∈ ∂(O × O), ν ∈ ν(x, y), we have, by our
representation formulas, that

∇Φ(x, y) · ν = a1φ(y)∇φ(x) · νx + a2φ(x)∇φ(y) · νy

≥ a1φ(y)α + a2φ(x)α ≥ α(a1 + a2) ≥ α

(where (a1, a2) = (1, 0) and (0, 1) for the cases (x, y) ∈ (∂O × O) ∪ (O × ∂O)), and so Part 2
holds with the function Φ(x, y). Finally, as O × O is bounded, Part 3 follows immediately from
Part 2. �

Lemma 6.3. Let O be bounded and admissible. Then for (x, y) ∈ Ō × Ō,

TŌ×Ō(x, y) = TŌ(x)× TŌ(y).

Furthermore,

projTŌ×Ō(x,y)


ξ

η


=


projTŌ(x)

(ξ)

projTŌ(x)
(η)


.

Proof. When D ⊂ Rd is admissible, it follows from Part (3) of Lemma 2.5 that

TD̄(z) =


v ∈ Rd

: lim
h↘0

dD̄(z + hv)

h
= 0


(i.e. lim replaces lim inf). Since O, and by Lemma 6.2, O × O, are bounded and admissible, the
first statement then follows immediately from the relation

d2
Ō×Ō


x
y


+ h


v

w


= d2

Ō(x + hv)+ d2
Ō(y + hw).

The second statement then follows from the first by a similar argument. �
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6.1. Synchronously coupled reflected Brownian motion

We now discuss synchronously coupled reflected Brownian motion. A d-dimensional syn-
chronously coupled reflected Brownian motion is a 2d-dimensional process Z t = (X t , Yt ) in a
product domain Ō × Ō which satisfies the reflected SDE

dZ t = σ(Z t )dWt + dL t ,

where

σ(z) ≡


I
I


.

Note that, because σ is constant, there is no difference between the Stratonovich and Itô versions
of the above SDE. We will express this reflected SDE in a more convenient form as the pair of
reflected SDEs

dX t = dWt + dL t , X0 = x0 and dYt = dWt + dMt , Y0 = y0.

We think of X t and Yt as being two d-dimensional processes which are driven by the same
Brownian motion Wt and which are constrained to lie in the same domain Ō. The two processes
move in sync except for when one or the other is bumps against the boundary and gets nudged.

We now consider the geometric properties of synchronously coupled reflected Brownian
motion in two domains. Such properties were used to prove the “hot spots conjecture” for these
domains (see [2,1] for more details).

Example 6.4. Let O ⊂ R2 be the obtuse triangle lying with its longest face on the horizontal
axis, and denote its left and right acute angles by α and β. Suppose x0 ≠ y0, and for x ≠ y, let
̸ (x, y) = arg(y − x). Then, P-almost surely,

− β ≤ ̸ (x0, y0) ≤ α =⇒ for all t either − β ≤ ̸ (X t , Yt ) ≤ α or X t = Yt . (35)

Proof. By (31), it suffices to show that (35) holds PN -a.s. Fix N and Wt ∈ Ω . In view of
Theorem 2.3 and Lemma 6.3 it will suffice to show that X N

t and Y N
t satisfy (35) where X N

t and
Y N

t satisfy the ODE

Ẋ N
t = projTŌ(X

N
t )
(Ẇ N

t ), X N
0 = x0

Ẏ N
t = projTŌ(Y

N
t )
(Ẇ N

t ), Y N
0 = y0.

(36)

It is straightforward to check that the functions X N
t , Y N

t starting at X N
0 = x0, Y N

0 = y0 and
defined inductively for t ∈ [m2−N , (m + 1)2−N

] by X N
t = projŌ(X

N
m2−N + (t − m2−N )Ẇ N

t )

and Y N
t = projŌ(Y

N
m2−N + (t − m2−N )Ẇ N

t ) satisfy (36). A simple geometric argument shows
that if ̸ (x, y) ∈ [−β, α] then ̸ (projŌ(x), projŌ(y)) ∈ [−β, α] or projŌ(x) = projŌ(y). From
this it follows by induction that X N

t and Y N
t satisfy (35) as desired. Fig. 2 shows a pair of sample

paths X N
t and Y N

t in the interval m2−N
≤ t ≤ (m+1)2−N where we use v to denote the constant

vector 2N (W(m+1)2−N − Wm2−N ). �

Example 6.5 (Proposition 2 in [1]). We now consider synchronously coupled reflected
Brownian motion in a lip domain. A lip domain is a domain in R2 which is bounded below
by a function f1(x) and above by another function f2(x) each of which is Lipschitz continuous
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Fig. 2. The effect of the boundary can be interpreted as a projection.

Fig. 3. A lip domain.

with constant bounded by 1. The domains are so named because they look like a pair of lips (see
Fig. 3).

Consider synchronously coupled reflected Brownian motion in a lip domain O where the
defining functions f1(x) and f2(x) are smooth and have Lipschitz constants bounded by λ < 1.
Then O is a bounded admissible domain. Recall the definition of ̸ (x, y) from the previous
example, and let x0, y0 ∈ R2 be such that x0 ≠ y0 and ̸ (x0, y0) ∈ [−

π
4 ,

π
4 ]. We have the

following geometric property for the paths X t and Yt :

∀t, either ̸ (X t , Yt ) ∈


−
π

4
,
π

4


or X t = Yt P-a.s. (37)

Proof. In view of (31) and Theorem 2.3 it suffices to show that for every Wt ∈ Ω , X N
t and Y N

t
satisfy (37) when X N

t and Y N
t solve the ODE (36). Let Θ N

t ≡ ̸ (X N
t , Y N

t ) or 0 according to
whether X N

t ≠ Y N
t or X N

t = Y N
t . It is enough to show that, dt-almost everywhere, Θ̇ N

t ≤ 0
when Θ N

t ∈ [
π
4 ,

π
2 − tan−1(λ)] and Θ̇ N

t ≥ 0 when −Θ N
t ∈ [

π
4 ,

π
2 − tan−1(λ)]. By symmetry it

will suffice to prove the first statement.
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Fig. 4. The effect of the boundary in two cases.

Let vt = Ẇ N
t , ṽt = projTO(X N

t )
(vt ), and ṽ′

t = projTO(Y N
t )
(vt ). We compute:

d
dt


Θ N

t


=

d
dt

tan−1

(Y N

t − X N
t )2

(Y N
t − X N

t )1


=
(Y N

t − X N
t ) · R(ṽt − ṽ′

t )

|Y N
t − X N

t |2

=
(Y N

t − X N
t ) · R(ṽt − vt )

|Y N
t − X N

t |2
+
(Y N

t − X N
t ) · R(vt − ṽ′

t )

|Y N
t − X N

t |2

where R =


0 −1
1 0


is the matrix which rotates vectors in R2 by 90◦ counter-clockwise. Suppose

Θ N
t ∈ [

π
4 ,

π
2 − tan−1(λ)]. Then since the Lipschitz constants of f1 and f2 are strictly less than 1,

X N
t cannot be on the f2-boundary and Y N

t cannot be on the f1-boundary. For each t , it follows
that either vt = ṽt or arg(R(ṽt − vt )) ∈ [π − tan−1(λ), π + tan−1(λ)] and either vt = ṽ′

t or
arg(R(vt − ṽ′

t )) ∈ [π − tan−1(λ), π + tan−1(λ)]. And so each of the terms in the sum above is
≤ 0. We depict in Fig. 4, the case where X N

t ∈ O and Y N
t ∈ ∂O. �

6.2. Mirror coupled reflected Brownian motion

Our final example involves mirror coupled reflected Brownian motion. A d-dimensional
mirror coupled reflected Brownian motion is a 2d-dimensional process Z t = (X t , Yt ) in a
product domain Ō × Ō which satisfies the reflected SDE

dZ t = σ(Z t )dWt + dL t , (38)

where

σ(z) = σ(x, y) ≡

 I

I − 2
(y − x)(y − x)⊤

|y − x |2

 ,
defined up until the first time τ that Z t hits the diagonal of Ō × Ō, at which point we stop our
process (i.e. Z t ≡ Zτ for t ≥ τ ). We will express this reflected SDE in a more convenient form
as the pair of reflected SDEs

dX t = dWt + dL t , X0 = x0

dYt =


I − 2

(Yt − X t )(Yt − X t )
⊤

|Yt − X t |
2


dWt + dMt , Y0 = y0.

(39)

We think of X t and Yt as being two d-dimensional processes which are “mirror coupled” with
respect to the driving Brownian motion Wt and which are constrained to lie in the same domain
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Ō. That is, if you consider the hyperplane which perpendicularly bisects the line segment
connecting X t and Yt to be a “mirror”, then the two processes move in such a way that they
are mirror images of each other until either process bumps into the boundary and is nudged
(which causes the mirror to shift). We refer the reader to the papers [2,1] for a more thorough
overview.

We will prove the same geometric property we considered for synchronously coupled reflected
Brownian motion in Example 6.5, but now for mirror coupled reflected Brownian motion. The
point is that (38) can be viewed as a Stratonovich reflected SDE and so again it suffices to prove
the geometric property for the approximating processes.

We make this rigorous with the following lemma which shows that, off the diagonal of O × O,
the Stratonovich correction factor for (38) is 0.

Lemma 6.6. For t < τ ,

d−
j=1

1
2

d


I − 2

(Yt − X t )(Yt − X t )
⊤

|Yt − X t |
2


i j
, (Wt ) j


= 0. (40)

In fact,

d


I − 2

(Yt − X t )(Yt − X t )
⊤

|Yt − X t |
2


i j
, (Wt ) j


= 0, for each j. (41)

Proof. It suffices to prove (41). Let Vi ≡ (Yt − X t )i , where we have suppressed the dependence
of Vi on t . An easy calculation shows that

d⟨Vℓ, (Wt ) j ⟩ =
−2V j Vℓ∑

k
V 2

k

dt

and

∂

∂Vi

 Vi V j∑
k

V 2
k

 =

V j

∑
k

V 2
k


− 2V 2

i V j∑
k

V 2
k

2

∂

∂V j

 Vi V j∑
k

V 2
k

 =

Vi

∑
k

V 2
k


− 2Vi V 2

j∑
k

V 2
k

2

∂

∂Vℓ

 Vi V j∑
k

V 2
k

 =
−2Vi V j Vℓ∑

k
V 2

k

2 , for ℓ ≠ i, j.

Putting these together, we have that
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d⟨
Vi V j∑
k

V 2
k

, (Wt ) j ⟩ =


V j

∑
k

V 2
k


− 2V 2

i V j∑
k

V 2
k

2


−2V j Vi∑

k
V 2

k



+


Vi

∑
k

V 2
k


− 2Vi V 2

j∑
k

V 2
k

2


−2V 2

j∑
k

V 2
k



+

−
ℓ≠i, j

−2Vi V j Vℓ∑
k

V 2
k

2


−2V j Vℓ∑

k
V 2

k


= 0.

From this, (41) immediately follows. �

We now prove a geometric property.

Example 6.7 (Example 6.5 for Mirror Coupling). Let O be the same lip domain defined by
smooth functions considered in Example 6.5 and consider the mirror coupled reflected Brownian
motion starting from x0 and y0 where x0 ≠ y0. Then (37) holds where X t and Yt are given by
(39).

Proof. Let Dε = {z = (x, y) ∈ Ō × Ō : |x − y| < ε} be the “ε-diagonal” of Ō × Ō. Consider
a sequence of smooth functions ρk : Ō × Ō → [0, 1] such that ρ(z) ≡ 0 on D 1

2k
and ρ(z) ≡ 1

off D 1
k
. Let σk(z) = ρk(z)σ (z). Then σk ∈ C2(Ō × Ō).

Let Pk be the measure on Z -pathspace induced by the solutions to the reflected SDE

dZ k
t = σk(Z

k
t ) ◦ dWt + dLk

t

and define Pk,N to be the measures on Z -pathspace induced by solutions to the approximating
reflected ODE

dZ k,N
t = σk(Z

k,N
t )dW N

t + dLk,N
t . (42)

Recall that the stopping time τ corresponds to the first time X t equals Yt and define τk ≡ inf{t :

|X t − Yt | <
1
k }. Let S = {Z t ∈ C([0,∞); R2d) : −

π
4 ≤ ̸ (X t , Yt ) ≤

π
4 , ∀t < τ } and let

Sk = {Z t ∈ C([0,∞); R2d) : −
π
4 ≤ ̸ (X t , Yt ) ≤

π
4 , ∀t < τk}.

Our goal is to show that P(S) = 1, where P is the measure induced on Z -pathspace by
(38). It is clear that the subsets Sk decrease monotonically to S, and so it suffices to prove that
P(Sk) = 1,∀k.

We first claim that P(Sk) = Pk(Sk). This is true because Sk is Fτk -measurable, and, in view
of Lemma 6.6 and the equality σ = σk on D 1

k
, it is clear that P(A) = Pk(A) for A ∈ Fτk . So we

need only show that Pk(Sk) = 1, and for this it will suffice to show that Pk,N (Sk) = 1. We argue
this as we did in Example 6.5.
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Fix N and Wt ∈ Ω and let Θk,N
t ≡ ̸ (X k,N

t , Y k,N
t ). By symmetry, it is enough to show that

Θ̇k,N
t ≤ 0 for Θk,N

t ∈ [
π
4 ,

π
2 − tan−1(λ)] for almost every t < τk . Let vt = Ẇ N

t and

wt =


I −

(Y k,N
t − X k,N

t )(Y k,N
t − X k,N

t )⊤

|Y k,N
t − X k,N

t |2


vt .

Then, in view of Theorem 2.3 and Lemma 6.3, Ẋ k,N
t = ṽt ≡ projTŌ(X

N
t )
(vt ) and Ẏ k,N

t = w̃t ≡

projTŌ(Y
N
t )
(wt ) (recall that ρk(X

k,N
t , Y k,N

t ) = 1 for t < τk).
We compute:

Θ̇k,N
t =

(Y N ,k
t − X N ,k

t ) · R(ṽt − w̃t )

|Y N ,k
t − X N ,k

t |2

=
(Y N ,k

t − X N ,k
t ) · R(ṽt − vt )

|Y N ,k
t − X N ,k

t |2
+
(Y N ,k

t − X N ,k
t ) · R(vt − wt )

|Y N ,k
t − X N ,k

t |2

+
(Y N ,k

t − X N ,k
t ) · R(wt − w̃t )

|Y N ,k
t − X N ,k

t |2
.

The argument in the Proof 6.1 again shows that the first and third terms are non-positive. That
the second term is non-positive follows from the fact that either vt = wt or arg(vt − wt ) =

±Θk,N
t . �
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