6 research outputs found

    Neonatal obstructive nephropathy induces necroptosis and necroinflammation

    Get PDF
    Urinary tract obstruction during kidney development causes tubular apoptosis, tubular necrosis, and interstitial inflammation. Necroptosis is a subtype of programmed necrosis mediated by the receptor-interacting serine/threonine-protein kinase-3 (RIPK3) and the pseudokinase mixed lineage kinase domain-like (MLKL). Necrosis induces inflammation and stimulates cell death in an autoamplification loop named necroinflammation. Here, we studied necroptosis and necroinflammation in obstructive nephropathy induced by unilateral ureteral obstruction (UUO) in neonatal C57Bl/6J mice. Ureteral obstruction induced tubular dilatation, tubular basement membrane thickening, cast formation, and increased expression of kidney injury molecule-1 (KIM-1). Morphological investigations showed either apoptotic or necrotic cells in the tubular compartment. Biochemical analysis revealed increased caspase-8 activity and upregulation of RIPK3 as well as phosphorylated-MLKL in UUO-kidneys. Pro-inflammatory cytokines (IL-1 alpha, INF-gamma, TNF-alpha) were upregulated following UUO. Taken together we show that necroptosis and necroinflammation are accompanied phenomena in neonatal kidneys with obstruction. These findings may help to develop novel strategies to treat congenital obstructive nephropathy

    Extratubular Polymerized Uromodulin Induces Leukocyte Recruitment and Inflammation In Vivo

    Get PDF
    Uromodulin (UMOD) is produced and secreted by tubular epithelial cells. Secreted UMOD polymerizes (pUMOD) in the tubular lumen, where it regulates salt transport and protects the kidney from bacteria and stone formation. Under various pathological conditions, pUMOD accumulates within the tubular lumen and reaches extratubular sites where it may interact with renal interstitial cells. Here, we investigated the potential of extratubular pUMOD to act as a damage associated molecular pattern (DAMP) molecule thereby creating local inflammation. We found that intrascrotal and intraperitoneal injection of pUMOD induced leukocyte recruitment in vivo and led to TNF-alpha secretion by F4/80 positive macrophages. Additionally, pUMOD directly affected vascular permeability and increased neutrophil extravasation independent of macrophage-released TNF-alpha. Interestingly, pUMOD displayed no chemotactic properties on neutrophils, did not directly activate beta 2 integrins and did not upregulate adhesion molecules on endothelial cells. In obstructed neonatal murine kidneys, we observed extratubular UMOD accumulation in the renal interstitium with tubular atrophy and leukocyte infiltrates. Finally, we found extratubular UMOD deposits associated with peritubular leukocyte infiltration in kidneys from patients with inflammatory kidney diseases. Taken together, we identified extratubular pUMOD as a strong inducer of leukocyte recruitment, underlining its critical role in mounting an inflammatory response in various kidneys pathologies

    Renal and Skeletal Anomalies in a Cohort of Individuals With Clinically Presumed Hereditary Nephropathy Analyzed by Molecular Genetic Testing

    Get PDF
    Background: Chronic kidney disease (CKD) in childhood and adolescence occurs with a median incidence of 9 per million of the age-related population. Over 70% of CKD cases under the age of 25 years can be attributed to a hereditary kidney disease. Among these are hereditary podocytopathies, ciliopathies and (monogenic) congenital anomalies of the kidney and urinary tract (CAKUT). These disease entities can present with a vast variety of extrarenal manifestations. So far, skeletal anomalies (SA) have been infrequently described as extrarenal manifestation in these entities. The aim of this study was to retrospectively investigate a cohort of individuals with hereditary podocytopathies, ciliopathies or CAKUT, in which molecular genetic testing had been performed, for the extrarenal manifestation of SA. Material and Methods: A cohort of 65 unrelated individuals with a clinically presumed hereditary podocytopathy (focal segmental glomerulosclerosis, steroid resistant nephrotic syndrome), ciliopathy (nephronophthisis, Bardet-Biedl syndrome, autosomal recessive/dominant polycystic kidney disease), or CAKUT was screened for SA. Data was acquired using a standardized questionnaire and medical reports. 57/65 (88%) of the index cases were analyzed using exome sequencing (ES). Results: 8/65 (12%) index individuals presented with a hereditary podocytopathy, ciliopathy, or CAKUT and an additional skeletal phenotype. In 5/8 families (63%), pathogenic variants in known disease-associated genes (1x BBS1, 1x MAFB, 2x PBX1, 1x SIX2) could be identified. Conclusions: This study highlights the genetic heterogeneity and clinical variability of hereditary nephropathies in respect of skeletal anomalies as extrarenal manifestation

    Rapid Response to Cyclosporin A and Favorable Renal Outcome in Nongenetic Versus Genetic Steroid-Resistant Nephrotic Syndrome

    No full text
    Background and objectives Treatment of congenital nephrotic syndrome (CNS) and steroid resistant nephrotic syndrome (SRNS) is demanding, and renal prognosis is poor. Numerous causative gene mutations have been identified in SRNS that affect the renal podocyte. In the era of high throughput sequencing techniques, patients with nongenetic SRNS frequently escape the scientific interest. We here present the long-term data of the German CNS/SRNS Follow-Up Study, focusing on the response to cyclosporin A (CsA) in patients with nongenetic versus genetic disease. Design, setting, participants, & measurements Cross sectional and longitudinal clinical data were collected from 231 patients with CNS/SRNS treated at eight university pediatric nephrology units with a median observation time of 113 months (interquartile range, 50-178). Genotyping was performed systematically in all patients. Results The overall mutation detection rate was high at 57% (97% in CNS and 41% in SRNS); 85% of all mutations were identified by the analysis of three single genes only (NPHS1, NPHS2, and WT1), accounting for 92% of all mutations in patients with CNS and 79% of all mutations in patients with SRNS. Remission of the disease in nongenetic SRNS was observed in 78% of patients after a median treatment period of 2.5 months; 82% of nongenetic patients responded within 6 months of therapy, and 98% of patients with nongenetic SRNS and CsA induced complete remission (normalbuminemia and no proteinuria) maintained a normal renal function. Genetic SRNS, on the contrary, is associated with a high rate of ESRD in 66% of patients. Only 3% of patients with genetic SRNS experienced a complete remission and 16% of patients with genetic SRNS experienced a partial remission after CsA therapy. Conclusions The efficacy of CsA is high in nonhereditary SRNS, with an excellent prognosis of renal function in the large majority of patients. CsA should be given for a minimum period of 6 months in these patients with nongenetic SRNS. In genetic SRNS, response to CsA was low and restricted to exceptional patients

    Måling av luftkvalitet over Fornebu og Hurum.

    Get PDF
    The recent discovery of mutations in the gene encoding diacylglycerol kinase epsilon (DGKE) identified a novel pathophysiologic mechanism leading to HUS and/or MPGN. We report ten new patients from eight unrelated kindreds with DGKE nephropathy. We combined these cases with all previously published cases to characterize the phenotypic spectrum and outcomes of this new disease entity. Most patients presented with HUS accompanied by proteinuria, whereas a subset of patients exhibited clinical and histologic patterns of MPGN without TMA. We also report the first two patients with clinical and histologic HUS/MPGN overlap. DGKE-HUS typically manifested in the first year of life but was not exclusively limited to infancy, and viral triggers frequently preceded HUS episodes. We observed signs of complement activation in some patients with DGKE-HUS, but the role of complement activation remains unclear. Most patients developed a slowly progressive proteinuric nephropathy: 80% of patients did not have ESRD within 10 years of diagnosis. Many patients experienced HUS remission without specific treatment, and a few patients experienced HUS recurrence despite complete suppression of the complement pathway. Five patients received renal allografts, with no post-transplant recurrence reported. In conclusion, we did not observe a clear genotype-phenotype correlation in patients with DGKE nephropathy, suggesting additional factors mediating phenotypic heterogeneity. Furthermore, the benefits of anti-complement therapy are questionable but renal transplant may be a feasible option in the treatment of patients with this condition
    corecore