304 research outputs found
Distribution of spring phytoplankton (mainly diatoms) in the upper 50 m of the Southwestern Atlantic Ocean (30-61°S)
This is the first study on diatom spatial patterns in relation to major oceanographic features along a megascale transect in the Southwestern Atlantic Ocean and provides a comparison with diatom distribution in surface sediments. Absolute abundances of diatoms, silicoflagellates and dinoflagellates (>10-μm fraction) were assessed in 80 bottle samples from 5 to 50 m, retrieved in November 1993 at 20 stations (30-61°S) along 53°W. Siliceous phytoplankton were scarce in the northern half of the transect and in the south of 57°S (100-150 cells L-1), with a strong peak in the vicinity of the Polar Front (∼200 000 cells L-1), whereas dinoflagellates were more abundant at the northern stations (up to 24 000 cells L-1). In the south of 50°S phytoplanktonic cell densities were loosely (but significantly, r = 0.54, P < 0.01) associated with chlorophyll a, whereas in the north of this latitude, this relationship disappeared (r = 0.018, P > 0.1). In total, 191 diatoms and 4 silicoflagellates were recorded. Changes in diatom assemblage compositions along the transect allowed identification of five discrete areas: Subtropical (29°S), Northern Transitional (34-41°S), Southern Transitional (43-48°S), Subantarctic (49-54°S) and Antarctic (55-59°S), each characterized by a set of typical species. Diversity changed little with latitude, but numbers of species were higher in the north of 40°S. Comparison of diatom assemblage makeup in the plankton and in the surface sediments shows very strong disagreements, whereby cold water species are very significantly over-represented in the sedimentary record, suggesting enhanced preservation and strong subsurface equatorward advection of the cold water taxa. © The Author 2006. Published by Oxford University Press. All rights reserved.Fil:Olguín, H.F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Boltovskoy, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Lange, C.B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
The calibration of the Sudbury Neutrino Observatory using uniformly distributed radioactive sources
The production and analysis of distributed sources of 24Na and 222Rn in the
Sudbury Neutrino Observatory (SNO) are described. These unique sources provided
accurate calibrations of the response to neutrons, produced through
photodisintegration of the deuterons in the heavy water target, and to low
energy betas and gammas. The application of these sources in determining the
neutron detection efficiency and response of the 3He proportional counter
array, and the characteristics of background Cherenkov light from trace amounts
of natural radioactivity is described.Comment: 24 pages, 13 figure
Measuring CMB Polarization with BOOMERANG
BOOMERANG is a balloon-borne telescope designed for long duration (LDB)
flights around Antarctica. The second LDB Flight of BOOMERANG took place in
January 2003. The primary goal of this flight was to measure the polarization
of the CMB. The receiver uses polarization sensitive bolometers at 145 GHz.
Polarizing grids provide polarization sensitivity at 245 and 345 GHz. We
describe the BOOMERANG telescope noting changes made for 2003 LDB flight, and
discuss some of the issues involved in the measurement of polarization with
bolometers. Lastly, we report on the 2003 flight and provide an estimate of the
expected results.Comment: 12 pages, 8 figures, To be published in the proceedings of "The
Cosmic Microwave Background and its Polarization", New Astronomy Reviews,
(eds. S. Hanany and K.A. Olive). Fixed typos, and reformatted citation
Large lepton asymmetry from Q-balls
We propose a scenario which can explain large lepton asymmetry and small
baryon asymmetry simultaneously. Large lepton asymmetry is generated through
Affleck-Dine (AD) mechanism and almost all the produced lepton numbers are
absorbed into Q-balls (L-balls). If the lifetime of the L-balls is longer than
the onset of electroweak phase transition but shorter than the epoch of big
bang nucleosynthesis (BBN), the large lepton asymmetry in the L-balls is
protected from sphaleron effects. On the other hand, small (negative) lepton
numbers are evaporated from the L-balls due to thermal effects, which are
converted into the observed small baryon asymmetry by virtue of sphaleron
effects. Large and positive lepton asymmetry of electron type is often
requested from BBN. In our scenario, choosing an appropriate flat direction in
the minimal supersymmetric standard model (MSSM), we can produce positive
lepton asymmetry of electron type but totally negative lepton asymmetry.Comment: 10 pages, 3 figures, ReVTeX
Accelerated Cosmological Models in First-Order Non-Linear Gravity
The evidence of the acceleration of universe at present time has lead to
investigate modified theories of gravity and alternative theories of gravity,
which are able to explain acceleration from a theoretical viewpoint without the
need of introducing dark energy. In this paper we study alternative
gravitational theories defined by Lagrangians which depend on general functions
of the Ricci scalar invariant in minimal interaction with matter, in view of
their possible cosmological applications. Structural equations for the
spacetimes described by such theories are solved and the corresponding field
equations are investigated in the Palatini formalism, which prevents
instability problems. Particular examples of these theories are also shown to
provide, under suitable hypotheses, a coherent theoretical explanation of
earlier results concerning the present acceleration of the universe and
cosmological inflation. We suggest moreover a new possible Lagrangian,
depending on the inverse of sinh(R), which gives an explanation to the present
acceleration of the universe.Comment: 23 pages, Revtex4 fil
Gravitational Coupling and Dynamical Reduction of The Cosmological Constant
We introduce a dynamical model to reduce a large cosmological constant to a
sufficiently small value. The basic ingredient in this model is a distinction
which has been made between the two unit systems used in cosmology and particle
physics. We have used a conformal invariant gravitational model to define a
particular conformal frame in terms of large scale properties of the universe.
It is then argued that the contributions of mass scales in particle physics to
the vacuum energy density should be considered in a different conformal frame.
In this manner, a decaying mechanism is presented in which the conformal factor
appears as a dynamical field and plays a key role to relax a large effective
cosmological constant. Moreover, we argue that this model also provides a
possible explanation for the coincidence problem.Comment: To appear in GR
Primeval Corrections to the CMB Anisotropies
We show that deviations of the quantum state of the inflaton from the thermal
vacuum of inflation may leave an imprint in the CMB anisotropies. The quantum
dynamics of the inflaton in such a state produces corrections to the
inflationary fluctuations, which may be observable. Because these effects
originate from IR physics below the Planck scale, they will dominate over any
trans-Planckian imprints in any theory which obeys decoupling. Inflation sweeps
away these initial deviations and forces its quantum state closer to the
thermal vacuum. We view this as the quantum version of the cosmic no-hair
theorem. Such imprints in the CMB may be a useful, independent test of the
duration of inflation, or of significant features in the inflaton potential
about 60 e-folds before inflation ended, instead of an unlikely discovery of
the signatures of quantum gravity. The absence of any such substructure would
suggest that inflation lasted uninterrupted much longer than
e-folds.Comment: 17 pages, latex, no figures; v3: added references and comments, final
version to appear in Phys. Rev.
Is cosmology consistent?
We perform a detailed analysis of the latest CMB measurements (including
BOOMERaNG, DASI, Maxima and CBI), both alone and jointly with other
cosmological data sets involving, e.g., galaxy clustering and the Lyman Alpha
Forest. We first address the question of whether the CMB data are internally
consistent once calibration and beam uncertainties are taken into account,
performing a series of statistical tests. With a few minor caveats, our answer
is yes, and we compress all data into a single set of 24 bandpowers with
associated covariance matrix and window functions. We then compute joint
constraints on the 11 parameters of the ``standard'' adiabatic inflationary
cosmological model. Out best fit model passes a series of physical consistency
checks and agrees with essentially all currently available cosmological data.
In addition to sharp constraints on the cosmic matter budget in good agreement
with those of the BOOMERaNG, DASI and Maxima teams, we obtain a heaviest
neutrino mass range 0.04-4.2 eV and the sharpest constraints to date on gravity
waves which (together with preference for a slight red-tilt) favors
``small-field'' inflation models.Comment: Replaced to match accepted PRD version. 14 pages, 12 figs. Tiny
changes due to smaller DASI & Maxima calibration errors. Expanded neutrino
and tensor discussion, added refs, typos fixed. Combined CMB data, window and
covariance matrix at http://www.hep.upenn.edu/~max/consistent.html or from
[email protected]
Central serous chorioretinopathy: An evidence-based treatment guideline.
Central serous chorioretinopathy (CSC) is a relatively common disease that causes vision loss due to macular subretinal fluid leakage and it is often associated with reduced vision-related quality of life. In CSC, the leakage of subretinal fluid through defects in the retinal pigment epithelial layer's outer blood-retina barrier appears to occur secondary to choroidal abnormalities and dysfunction. The treatment of CSC is currently the subject of controversy, although recent data obtained from several large randomized controlled trials provide a wealth of new information that can be used to establish a treatment algorithm. Here, we provide a comprehensive overview of our current understanding regarding the pathogenesis of CSC, current therapeutic strategies, and an evidence-based treatment guideline for CSC. In acute CSC, treatment can often be deferred for up to 3-4 months after diagnosis; however, early treatment with either half-dose or half-fluence photodynamic therapy (PDT) with the photosensitive dye verteporfin may be beneficial in selected cases. In chronic CSC, half-dose or half-fluence PDT, which targets the abnormal choroid, should be considered the preferred treatment. If PDT is unavailable, chronic CSC with focal, non-central leakage on angiography may be treated using conventional laser photocoagulation. CSC with concurrent macular neovascularization should be treated with half-dose/half-fluence PDT and/or intravitreal injections of an anti-vascular endothelial growth factor compound. Given the current shortage of verteporfin and the paucity of evidence supporting the efficacy of other treatment options, future studies-ideally, well-designed randomized controlled trials-are needed in order to evaluate new treatment options for CSC
The BOOMERanG experiment and the curvature of the Universe
We describe the BOOMERanG experiment and its main result, i.e. the
measurement of the large scale curvature of the Universe. BOOMERanG is a
balloon-borne microwave telescope with sensitive cryogenic detectors. BOOMERanG
has measured the angular distribution of the Cosmic Microwave Background on
of the sky, with a resolution of arcmin and a sensitivity
of per pixel. The resulting image is dominated by hot and cold
spots with rms fluctuations and typical size of . The
detailed angular power spectrum of the image features three peaks and two dips
at and , respectively. Such very characteristic
spectrum can be explained assuming that the detected structures are the result
of acoustic oscillations in the primeval plasma. In this framework, the
measured pattern constrains the density parameter to be (95% confidence interval). Other cosmological parameters, like the
spectral index of initial density fluctuations, the density parameter for
baryons, dark matter and dark energy, are detected or constrained by the
BOOMERanG measurements and by other recent CMB anisotropy experiments. When
combined with other cosmological observations, these results depict a new,
consistent, cosmological scenario.Comment: Proc. of the Erice School on "Neutrinos in Astro, Particle and
Nuclear Physics", 18.-26. September 2001, Amand Faessler, Jan Kuckei eds,
"Progress in Particle and Nuclear Physics", vol. 4
- …