25,831 research outputs found
Poisson sigma models and symplectic groupoids
We consider the Poisson sigma model associated to a Poisson manifold. The
perturbative quantization of this model yields the Kontsevich star product
formula. We study here the classical model in the Hamiltonian formalism. The
phase space is the space of leaves of a Hamiltonian foliation and has a natural
groupoid structure. If it is a manifold then it is a symplectic groupoid for
the given Poisson manifold. We study various families of examples. In
particular, a global symplectic groupoid for a general class of two-dimensional
Poisson domains is constructed.Comment: 34 page
Current saturation and Coulomb interactions in organic single-crystal transistors
Electronic transport through rubrene single-crystal field effect transistors
(FETs) is investigated experimentally in the high carrier density regime (n ~
0.1 carrier/molecule). In this regime, we find that the current does not
increase linearly with the density of charge carriers, and tends to saturate.
At the same time, the activation energy for transport unexpectedly increases
with increasing n. We perform a theoretical analysis in terms of a well-defined
microscopic model for interacting Frohlich polarons, that quantitatively
accounts for our experimental observations. This work is particularly
significant for our understanding of electronic transport through organic FETs.Comment: Extended version with 1 additional figure and an appendix explaining
the consistency of the theoretical calculatio
Suppression of Decoherence and Disentanglement by the Exchange Interaction
Entangled qubit pairs can serve as a quantum memory or as a resource for
quantum communication. The utility of such pairs is measured by how long they
take to disentangle or decohere. To answer the question of whether qubit-qubit
interactions can prolong entanglement, we calculate the dissipative dynamics of
a pair of qubits coupled via the exchange interaction in the presence of random
telegraph noise and noise. We show that for maximally entangled (Bell)
states, the exchange interaction generally suppresses decoherence and
disentanglement. This suppression is more apparent for random telegraph noise
if the noise is non-Markovian, whereas for noise the exchange interaction
should be comparable in magnitude to strongest noise source. The entangled
singlet-triplet superposition state of 2 qubits ( Bell state) can
be protected by the interaction, while for the triplet-triplet state
( Bell state), it is less effective. Thus the former is more
suitable for encoding quantum information
Phonon-affected steady-state transport through molecular quantum dots
We consider transport through a vibrating molecular quantum dot contacted to
macroscopic leads acting as charge reservoirs. In the equilibrium and
nonequilibrium regime, we study the formation of a polaron-like transient state
at the quantum dot for all ratios of the dot-lead coupling to the energy of the
local phonon mode. We show that the polaronic renormalization of the dot-lead
coupling is a possible mechanism for negative differential conductance.
Moreover, the effective dot level follows one of the lead chemical potentials
to enhance resonant transport, causing novel features in the inelastic
tunneling signal. In the linear response regime, we investigate the impact of
the electron-phonon interaction on the thermoelectrical properties of the
quantum dot device.Comment: 11 pages, 7 figures, FQMT11 Proceeding
Interaction of strongly correlated electrons and acoustical phonons
We investigate the interaction of correlated electrons with acoustical
phonons using the extended Hubbard-Holstein model in which both, the
electron-phonon interaction and the on-site Coulomb repulsion are considered to
be strong. The Lang-Firsov canonical transformation allows to obtain mobile
polarons for which a new diagram technique and generalized Wick's theorem is
used. This allows to handle the Coulomb repulsion between the electrons emerged
into a sea of phonon fields (\textit{phonon clouds}). The physics of emission
and absorption of the collective phonon-field mode by the polarons is discussed
in detail. Moreover, we have investigated the different behavior of optical and
acoustical phonon clouds when propagating through the lattice. In the
strong-coupling limit of the electron-phonon interaction, and in the normal as
well as in the superconducting phase, chronological thermodynamical averages of
products of acoustical phonon-cloud operators can be expressed by one-cloud
operator averages. While the normal one-cloud propagator has the form of a
Lorentzian, the anomalous one is of Gaussian form and considerably smaller.
Therefore, the anomalous electron Green's functions can be considered to be
more important than corresponding polarons functions, i.e., pairing of
electrons without phonon-clouds is easier to achieve than pairing of polarons
with such clouds.Comment: : 28 pages, 9 figures, revtex4. Invited paper for a special issue of
Low Temperature Physics dedicated to the 20th anniversary of HTS
Phase transition and phase diagram at a general filling in the spinless one-dimensional Holstein Model
Among the mechanisms for lattice structural deformation, the electron-phonon
interaction mediated Peierls charge-density-wave (CDW) instability in single
band low-dimensional systems is perhaps the most ubiquitous. The standard
mean-field picture predicts that the CDW transition occurs at all fillings and
all values of the electron-phonon coupling and the adiabaticity parameter
. Here, we correct the mean-field expression for the Peierls
instability condition by showing that the non-interacting static
susceptibility, at twice the Fermi momentum, should be replaced by the dynamic
one. We derive the Luttinger liquid (LL) to CDW transition condition, {\it
exact to second order in a novel blocked perturbative approach}, for the
spinless one-dimensional Holstein model in the adiabatic regime. The small
parameter is the ratio . We present the phase diagram at
non-half-filling by obtaining the surprising result that the CDW occurs in a
more restrictive region of a two parameter ( and )
space than at half-filling.Comment: Made changes in the appendices and also in notatio
The anomaly-free quantization of two-dimensional relativistic string. I
An anomaly-free quantum theory of a relativistic string is constructed in
two-dimensional space-time. The states of the string are found to be similar to
the states of a massless chiral quantum particle. This result is obtained by
generalizing the concept of an ``operator'' in quantum field theory.Comment: LaTeX, 19 pages, no figure
- …
