27,935 research outputs found

    Remote Stratigraphic Analysis: Combined TM and AIS Results in the Wind River/bighorn Basin Area, Wyoming

    Get PDF
    An in-progress study demonstrates the utility of airborne imaging spectrometer (AIS) data for unraveling the stratigraphic evolution of a North American, western interior foreland basin. AIS data are used to determine the stratigraphic distribution of mineralogical facies that are diagnostic of specific depositional environments. After wavelength and amplitude calibration using natural ground targets with known spectral characteristics, AIS data identify calcite, dolomite, gypsum and montmorillonite-bearing strata in the Permian-Cretaceous sequence. Combined AIS and TM results illustrate the feasibility of spectral stratigraphy, remote analysis of stratigraphic sequences

    A review of applied methods in Europe for flood-frequency analysis in a changing environment

    Get PDF
    The report presents a review of methods used in Europe for trend analysis, climate change projections and non-stationary analysis of extreme precipitation and flood frequency. In addition, main findings of the analyses are presented, including a comparison of trend analysis results and climate change projections. Existing guidelines in Europe on design flood and design rainfall estimation that incorporate climate change are reviewed. The report concludes with a discussion of research needs on non-stationary frequency analysis for considering the effects of climate change and inclusion in design guidelines. Trend analyses are reported for 21 countries in Europe with results for extreme precipitation, extreme streamflow or both. A large number of national and regional trend studies have been carried out. Most studies are based on statistical methods applied to individual time series of extreme precipitation or extreme streamflow using the non-parametric Mann-Kendall trend test or regression analysis. Some studies have been reported that use field significance or regional consistency tests to analyse trends over larger areas. Some of the studies also include analysis of trend attribution. The studies reviewed indicate that there is some evidence of a general increase in extreme precipitation, whereas there are no clear indications of significant increasing trends at regional or national level of extreme streamflow. For some smaller regions increases in extreme streamflow are reported. Several studies from regions dominated by snowmelt-induced peak flows report decreases in extreme streamflow and earlier spring snowmelt peak flows. Climate change projections have been reported for 14 countries in Europe with results for extreme precipitation, extreme streamflow or both. The review shows various approaches for producing climate projections of extreme precipitation and flood frequency based on alternative climate forcing scenarios, climate projections from available global and regional climate models, methods for statistical downscaling and bias correction, and alternative hydrological models. A large number of the reported studies are based on an ensemble modelling approach that use several climate forcing scenarios and climate model projections in order to address the uncertainty on the projections of extreme precipitation and flood frequency. Some studies also include alternative statistical downscaling and bias correction methods and hydrological modelling approaches. Most studies reviewed indicate an increase in extreme precipitation under a future climate, which is consistent with the observed trend of extreme precipitation. Hydrological projections of peak flows and flood frequency show both positive and negative changes. Large increases in peak flows are reported for some catchments with rainfall-dominated peak flows, whereas a general decrease in flood magnitude and earlier spring floods are reported for catchments with snowmelt-dominated peak flows. The latter is consistent with the observed trends. The review of existing guidelines in Europe on design floods and design rainfalls shows that only few countries explicitly address climate change. These design guidelines are based on climate change adjustment factors to be applied to current design estimates and may depend on design return period and projection horizon. The review indicates a gap between the need for considering climate change impacts in design and actual published guidelines that incorporate climate change in extreme precipitation and flood frequency. Most of the studies reported are based on frequency analysis assuming stationary conditions in a certain time window (typically 30 years) representing current and future climate. There is a need for developing more consistent non-stationary frequency analysis methods that can account for the transient nature of a changing climate

    Momentum average approximation for models with boson-modulated hopping: Role of closed loops in the dynamical generation of a finite quasiparticle mass

    Full text link
    We generalize the momentum average approximation to study the properties of single polarons in models with boson affected hopping, where the fermion-boson scattering depends explicitly on both the fermion's and the boson's momentum. As a specific example, we investigate the Edwards fermion-boson model in both one and two dimensions. In one dimension, this allows us to compare our results with exact diagonalization results, to validate the accuracy of our approximation. The generalization to two-dimensional lattices allows us to calculate the polaron's quasiparticle weight and dispersion throughout the Brillouin zone and to demonstrate the importance of Trugman loops in generating a finite effective mass even when the free fermion has an infinite mass.Comment: 15 pages, 14 figure

    Praziquantel in clonorchiasis and opisthorchiasis

    Get PDF
    A single stool examination revealed pathogenic intestinal parasites in 462 (58%) of 796 vietnamese and cambodian refugees. 56 (7.0%) were infected with Clonorchis sinensis and/or Opisthorchis viverrini. These patients received Praziquantel in a dosage of 20 mg/kg bwt. p.day on 3 consecutive days. Parasitological controls were completed after 12 months. No further excretion of eggs could be detected in 88% of the patients. Concurrent infections with other trematodes and cestodes were also cured. Nematode infections remained uninfluenced. No change of haematological and biochemical parameters could be observed during therapy. Diarrhea and epigastric pain were common side effects, which are probably not effects of the drug itself. They rather seem to be due to the release of parasitic antigens. This is also indicated by a further increase of circulating Ig E after therapy

    High Frequency Scattering from Arbitrarily Oriented Dielectric Disks

    Get PDF
    Calculations have been made of electromagnetic wave scattering from dielectric disks of arbitrary shape and orientation in the high frequency (physical optics) regime. The solution is obtained by approximating the fields inside the disk with the fields induced inside an identically oriented slab (i.e. infinite parallel planes) with the same thickness and dielectric properties. The fields inside the disk excite conduction and polarization currents which are used to calculate the scattered fields by integrating the radiation from these sources over the volume of the disk. This computation has been executed for observers in the far field of the disk in the case of disks with arbitrary orientation and for arbitrary polarization of the incident radiation. The results have been expressed in the form of a dyadic scattering amplitude for the disk. The results apply to disks whose diameter is large compared to wavelength and whose thickness is small compared to diameter, but the thickness need not be small compared to wavelength. Examples of the dependence of the scattering amplitude on frequency, dielectric properties of the disk and disk orientation are presented for disks of circular cross section

    Magnetooptical effects in quantum wells irradiated with light pulses

    Full text link
    The method of detection and investigation of the magnetopolaron effect in the semiconductor quantum wells (QW) in a strong magnetic field, based on pulse light irradiation and measuring the reflected and transmitted pulses, has been proposed. It has been shown that a beating amplitude on the frequencies, corresponding to the magnetopolaron energy level splitting, depends strongly from the exciting pulse width. The existence of the time points of the total reflection and total transparency has been predicted. The high orders of the perturbation theory on electron-electromagnetic field interaction have been taken into account.Comment: 5 pages, 5 figures with captions, corrected typos, figures are reedeted to improve their quality in accordance with the Referee requirement; Phys. Rev. B, Brief Reports, submitted for publicatio

    Single-particle and Interaction Effects on the Cohesion and Transport and Magnetic Properties of Metal Nanowires at Finite Voltages

    Full text link
    The single-particle and interaction effects on the cohesion, electronic transport, and some magnetic properties of metallic nanocylinders have been studied at finite voltages by using a generalized mean-field electron model. The electron-electron interactions are treated in the self-consistent Hartree approximation. Our results show the single-particle effect is dominant in the cohesive force, while the nonzero magnetoconductance and magnetotension coefficients are attributed to the interaction effect. Both single-particle and interaction effects are important to the differential conductance and magnetic susceptibility.Comment: 5 pages, 6 figure
    corecore