34,221 research outputs found

    Signatures of Hong-Ou-Mandel Interference at Microwave Frequencies

    Full text link
    Two-photon quantum interference at a beam splitter, commonly known as Hong-Ou-Mandel interference, was recently demonstrated with \emph{microwave-frequency} photons by Lang \emph{et al.}\,\cite{lang:microwaveHOM}. This experiment employed circuit QED systems as sources of microwave photons, and was based on the measurement of second-order cross-correlation and auto-correlation functions of the microwave fields at the outputs of the beam splitter. Here we present the calculation of these correlation functions for the cases of inputs corresponding to: (i) trains of \emph{pulsed} Gaussian or Lorentzian single microwave photons, and (ii) resonant fluorescent microwave fields from \emph{continuously-driven} circuit QED systems. The calculations include the effects of the finite bandwidth of the detection scheme. In both cases, the signature of two-photon quantum interference is a suppression of the second-order cross-correlation function for small delays. The experiment described in Ref. \onlinecite{lang:microwaveHOM} was performed with trains of \emph{Lorentzian} single photons, and very good agreement between the calculations and the experimental data was obtained.Comment: 11 pages, 3 figure

    Structural and magnetic transition in CeFeAsO: separated or connected?

    Get PDF
    Using an adapted Sn-flux growth technique we obtained comparatively large CeFeAsO single crystals of better quality than previously reported polycrystals or single crystals, as evidenced by much sharper anomalies at the structural and magnetic phase transitions as well as a much higher residual resistivity ratio of 12. In the magnetically ordered phase we observe a very pronounced metallic behavior of the in-plane resistivity, which excludes a Mott insulator regime at low temperature. The separation Delta_T = T_0 - T_N between structural and magnetic ordering temperatures decreases with increasing sample quality, from 18 K in the initial reports to 6 K in the present single crystals, demonstrating that this separation is not an intrinsic property of the RFeAsO systems. Our results indicate that the coupling between magnetic ordering and structural distortion is very similar in AFe2As2 and RFeAsO type of compounds, much more similar than previously thought. The implications of our experimental results give arguments both in favor and against the nematic phase model.Comment: published in PRB with the title 'Coupling between the structural and magnetic transition in CeFeAsO

    Green's and spectral functions of the small Frolich polaron

    Full text link
    According to recent Quantum Monte Carlo simulations the small polaron theory is practically exact in a wide range of the long-range (Frohlich) electron-phonon coupling and adiabatic ratio. We apply the Lang-Firsov transformation to convert the strong-coupling term in the Hamiltonian into the form of an effective hopping integral and derive the single-particle Green's function describing propagation of the small Frohlich polaron. One and two dimensional spectral functions are studied by expanding the Green's function perturbatively. Numerical calculations of the spectral functions are produced. Remarkably, the coherent spectral weight (Z) and effective mass (Z') renormalisation exponents are found to be different with Z'>>Z, which can explain a small coherent spectral weight and a relatively moderate mass enhancement in oxides.Comment: RevTeX, 5 pages, 2 postscript figures, LaTeX processing problems correcte

    Transmission of a Symmetric Light Pulse through a Wide QW

    Full text link
    The reflection, transmission and absorption of a symmetric electromagnetic pulse, which carrying frequency is close to the frequency of an interband transition in a QW (QW), are obtained. The energy levels of a QW are assumed discrete, one exited level is taken into account. The case of a wide QW is considered when a length of the pulse wave, appropriate to the carrying frequency, is comparable to the QW's width. In figures the time dependencies of the dimensionless reflection, absorption are transmission are represented. It is shown, that the spatial dispersion and a distinction in refraction indexes influence stronger reflection.Comment: 8 pages,8 figures with caption

    The nature of Ho magnetism in multiferroic HoMnO3

    Full text link
    Using x-ray resonant magnetic scattering and x-ray magnetic circular dichroism, techniques that are element specific, we have elucidated the role of Ho3+ in multiferroic HoMnO3. In zero field, Ho3+ orders antiferromagnetically with moments aligned along the hexagonal c direction below 40 K, and undergoes a transition to another magnetic structure below 4.5 K. In applied electric fields of up to 1x10^7 V/m, the magnetic structure of Ho3+ remains unchanged.Comment: 4 pages, 3 figures Manuscript accepted for publication in Phys. Rev. Lett. 200
    • …
    corecore